File size: 7,585 Bytes
33facbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97f0d6e
33facbc
 
 
 
 
 
 
 
 
 
 
 
f5714bb
 
33facbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97f0d6e
33facbc
 
 
97f0d6e
33facbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97f0d6e
 
 
 
 
 
 
 
 
33facbc
 
 
 
97f0d6e
 
33facbc
 
 
 
 
 
 
 
 
 
 
 
97f0d6e
33facbc
 
 
 
97f0d6e
33facbc
97f0d6e
33facbc
 
 
 
 
 
97f0d6e
 
33facbc
97f0d6e
33facbc
97f0d6e
33facbc
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""

from __future__ import annotations

import torch
from torch import nn
import torch
import torch.nn.functional as F

from x_transformers.x_transformers import RotaryEmbedding
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaRotaryEmbedding
from transformers.models.llama import LlamaConfig
from torch.utils.checkpoint import checkpoint

from diffrhythm.model.modules import (
    TimestepEmbedding,
    ConvNeXtV2Block,
    ConvPositionEmbedding,
    DiTBlock,
    AdaLayerNormZero_Final,
    precompute_freqs_cis,
    get_pos_embed_indices,
)
# from liger_kernel.transformers import apply_liger_kernel_to_llama
# apply_liger_kernel_to_llama()

# Text embedding


class TextEmbedding(nn.Module):
    def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
        super().__init__()
        self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim)  # use 0 as filler token

        if conv_layers > 0:
            self.extra_modeling = True
            self.precompute_max_pos = 4096  # ~44s of 24khz audio
            self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
            self.text_blocks = nn.Sequential(
                *[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]
            )
        else:
            self.extra_modeling = False

    def forward(self, text: int["b nt"], seq_len, drop_text=False):  # noqa: F722
        #text = text + 1  # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
        #text = text[:, :seq_len]  # curtail if character tokens are more than the mel spec tokens
        batch, text_len = text.shape[0], text.shape[1]
        #text = F.pad(text, (0, seq_len - text_len), value=0)

        if drop_text:  # cfg for text
            text = torch.zeros_like(text)

        text = self.text_embed(text)  # b n -> b n d

        # possible extra modeling
        if self.extra_modeling:
            # sinus pos emb
            batch_start = torch.zeros((batch,), dtype=torch.long)
            pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
            text_pos_embed = self.freqs_cis[pos_idx]
            text = text + text_pos_embed

            # convnextv2 blocks
            text = self.text_blocks(text)

        return text


# noised input audio and context mixing embedding


class InputEmbedding(nn.Module):
    def __init__(self, mel_dim, text_dim, out_dim, cond_dim):
        super().__init__()
        self.proj = nn.Linear(mel_dim * 2 + text_dim + cond_dim * 2, out_dim)
        self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)

    def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], style_emb, time_emb, drop_audio_cond=False):  # noqa: F722
        if drop_audio_cond:  # cfg for cond audio
            cond = torch.zeros_like(cond)

        style_emb = style_emb.unsqueeze(1).repeat(1, x.shape[1], 1)
        time_emb = time_emb.unsqueeze(1).repeat(1, x.shape[1], 1)
        # print(x.shape, cond.shape, text_embed.shape, style_emb.shape, time_emb.shape)
        x = self.proj(torch.cat((x, cond, text_embed, style_emb, time_emb), dim=-1))
        x = self.conv_pos_embed(x) + x
        return x


# Transformer backbone using DiT blocks


class DiT(nn.Module):
    def __init__(
        self,
        *,
        dim,
        depth=8,
        heads=8,
        dim_head=64,
        dropout=0.1,
        ff_mult=4,
        mel_dim=100,
        text_num_embeds=256,
        text_dim=None,
        conv_layers=0,
        long_skip_connection=False,
        use_style_prompt=False
    ):
        super().__init__()

        cond_dim = 512
        self.time_embed = TimestepEmbedding(cond_dim)
        self.start_time_embed = TimestepEmbedding(cond_dim)
        if text_dim is None:
            text_dim = mel_dim
        self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers)
        self.input_embed = InputEmbedding(mel_dim, text_dim, dim, cond_dim=cond_dim)

        #self.rotary_embed = RotaryEmbedding(dim_head)

        self.dim = dim
        self.depth = depth

        #self.transformer_blocks = nn.ModuleList(
        #    [DiTBlock(dim=dim, heads=heads, dim_head=dim_head, ff_mult=ff_mult, dropout=dropout, use_style_prompt=use_style_prompt) for _ in range(depth)]
        #)
        llama_config = LlamaConfig(hidden_size=dim, intermediate_size=dim * ff_mult, hidden_act='silu')
        llama_config._attn_implementation = 'sdpa'
        #llama_config._attn_implementation = ''
        self.transformer_blocks = nn.ModuleList(
            [LlamaDecoderLayer(llama_config, layer_idx=i) for i in range(depth)]
        )
        self.rotary_emb = LlamaRotaryEmbedding(config=llama_config)
        self.long_skip_connection = nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None

        self.text_fusion_linears = nn.ModuleList(
            [
                nn.Sequential(
                    nn.Linear(cond_dim, dim),
                    nn.SiLU()
                ) for i in range(depth // 2)
            ]
        )
        for layer in self.text_fusion_linears:
            for p in layer.parameters():
                p.detach().zero_()

        self.norm_out = AdaLayerNormZero_Final(dim, cond_dim)  # final modulation
        self.proj_out = nn.Linear(dim, mel_dim)

        # if use_style_prompt:
        #     self.prompt_rnn = nn.LSTM(64, cond_dim, 1, batch_first=True)

    def forward_timestep_invariant(self, text, seq_len, drop_text, start_time):
        s_t = self.start_time_embed(start_time)
        text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
        text_residuals = []
        for layer in self.text_fusion_linears:
            text_residual = layer(text_embed)
            text_residuals.append(text_residual)
        return s_t, text_embed, text_residuals


    def forward(
        self,
        x: float["b n d"],  # nosied input audio  # noqa: F722
        text_embed: int["b nt"],  # text  # noqa: F722
        text_residuals,
        cond: float["b n d"],  # masked cond audio  # noqa: F722
        time: float["b"] | float[""],  # time step  # noqa: F821 F722
        drop_audio_cond,  # cfg for cond audio
        drop_prompt=False,
        style_prompt=None, # [b d t]
        start_time=None,
    ):
        batch, seq_len = x.shape[0], x.shape[1]
        if time.ndim == 0:
            time = time.repeat(batch)

        t = self.time_embed(time)
        c = t + start_time

        if drop_prompt:
            style_prompt = torch.zeros_like(style_prompt)
        
        style_embed = style_prompt # [b, 512]

        x = self.input_embed(x, cond, text_embed, style_embed, c, drop_audio_cond=drop_audio_cond)

        if self.long_skip_connection is not None:
            residual = x

        pos_ids = torch.arange(x.shape[1], device=x.device)
        pos_ids = pos_ids.unsqueeze(0).repeat(x.shape[0], 1)
        rotary_embed = self.rotary_emb(x, pos_ids)

        for i, block in enumerate(self.transformer_blocks):
            x, *_ = block(x, position_embeddings=rotary_embed)
            if i < self.depth // 2:
                x = x + text_residuals[i]

        if self.long_skip_connection is not None:
            x = self.long_skip_connection(torch.cat((x, residual), dim=-1))

        x = self.norm_out(x, c)
        output = self.proj_out(x)

        return output