Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,373 Bytes
33facbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
from __future__ import annotations
import os
import gc
from tqdm import tqdm
import wandb
import torch
from torch.optim import AdamW
from torch.optim.lr_scheduler import LinearLR, SequentialLR, ConstantLR
from accelerate import Accelerator
from accelerate.utils import DistributedDataParallelKwargs
from diffrhythm.dataset.custom_dataset_align2f5 import LanceDiffusionDataset
from torch.utils.data import DataLoader, DistributedSampler
from ema_pytorch import EMA
from diffrhythm.model import CFM
from diffrhythm.model.utils import exists, default
import time
# from apex.optimizers.fused_adam import FusedAdam
# trainer
class Trainer:
def __init__(
self,
model: CFM,
args,
epochs,
learning_rate,
#dataloader,
num_warmup_updates=20000,
save_per_updates=1000,
checkpoint_path=None,
batch_size=32,
batch_size_type: str = "sample",
max_samples=32,
grad_accumulation_steps=1,
max_grad_norm=1.0,
noise_scheduler: str | None = None,
duration_predictor: torch.nn.Module | None = None,
wandb_project="test_e2-tts",
wandb_run_name="test_run",
wandb_resume_id: str = None,
last_per_steps=None,
accelerate_kwargs: dict = dict(),
ema_kwargs: dict = dict(),
bnb_optimizer: bool = False,
reset_lr: bool = False,
use_style_prompt: bool = False,
grad_ckpt: bool = False
):
self.args = args
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=False, )
logger = "wandb" if wandb.api.api_key else None
#logger = None
print(f"Using logger: {logger}")
# print("-----------1-------------")
import tbe.common
# print("-----------2-------------")
self.accelerator = Accelerator(
log_with=logger,
kwargs_handlers=[ddp_kwargs],
gradient_accumulation_steps=grad_accumulation_steps,
**accelerate_kwargs,
)
# print("-----------3-------------")
if logger == "wandb":
if exists(wandb_resume_id):
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}}
else:
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}}
self.accelerator.init_trackers(
project_name=wandb_project,
init_kwargs=init_kwargs,
config={
"epochs": epochs,
"learning_rate": learning_rate,
"num_warmup_updates": num_warmup_updates,
"batch_size": batch_size,
"batch_size_type": batch_size_type,
"max_samples": max_samples,
"grad_accumulation_steps": grad_accumulation_steps,
"max_grad_norm": max_grad_norm,
"gpus": self.accelerator.num_processes,
"noise_scheduler": noise_scheduler,
},
)
self.precision = self.accelerator.state.mixed_precision
self.precision = self.precision.replace("no", "fp32")
print("!!!!!!!!!!!!!!!!!", self.precision)
self.model = model
#self.model = torch.compile(model)
#self.dataloader = dataloader
if self.is_main:
self.ema_model = EMA(model, include_online_model=False, **ema_kwargs)
self.ema_model.to(self.accelerator.device)
if self.accelerator.state.distributed_type in ["DEEPSPEED", "FSDP"]:
self.ema_model.half()
self.epochs = epochs
self.num_warmup_updates = num_warmup_updates
self.save_per_updates = save_per_updates
self.last_per_steps = default(last_per_steps, save_per_updates * grad_accumulation_steps)
self.checkpoint_path = default(checkpoint_path, "ckpts/test_e2-tts")
self.max_samples = max_samples
self.grad_accumulation_steps = grad_accumulation_steps
self.max_grad_norm = max_grad_norm
self.noise_scheduler = noise_scheduler
self.duration_predictor = duration_predictor
self.reset_lr = reset_lr
self.use_style_prompt = use_style_prompt
self.grad_ckpt = grad_ckpt
if bnb_optimizer:
import bitsandbytes as bnb
self.optimizer = bnb.optim.AdamW8bit(model.parameters(), lr=learning_rate)
else:
self.optimizer = AdamW(model.parameters(), lr=learning_rate)
#self.optimizer = FusedAdam(model.parameters(), lr=learning_rate)
#self.model = torch.compile(self.model)
if self.accelerator.state.distributed_type == "DEEPSPEED":
self.accelerator.state.deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = batch_size
self.get_dataloader()
self.get_scheduler()
# self.get_constant_scheduler()
self.model, self.optimizer, self.scheduler, self.train_dataloader = self.accelerator.prepare(self.model, self.optimizer, self.scheduler, self.train_dataloader)
def get_scheduler(self):
warmup_steps = (
self.num_warmup_updates * self.accelerator.num_processes
) # consider a fixed warmup steps while using accelerate multi-gpu ddp
total_steps = len(self.train_dataloader) * self.epochs / self.grad_accumulation_steps
decay_steps = total_steps - warmup_steps
warmup_scheduler = LinearLR(self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_steps)
decay_scheduler = LinearLR(self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_steps)
# constant_scheduler = ConstantLR(self.optimizer, factor=1, total_iters=decay_steps)
self.scheduler = SequentialLR(
self.optimizer, schedulers=[warmup_scheduler, decay_scheduler], milestones=[warmup_steps]
)
def get_constant_scheduler(self):
total_steps = len(self.train_dataloader) * self.epochs / self.grad_accumulation_steps
self.scheduler = ConstantLR(self.optimizer, factor=1, total_iters=total_steps)
def get_dataloader(self):
prompt_path = self.args.prompt_path.split('|')
lrc_path = self.args.lrc_path.split('|')
latent_path = self.args.latent_path.split('|')
ldd = LanceDiffusionDataset(*LanceDiffusionDataset.init_data(self.args.dataset_path), \
max_frames=self.args.max_frames, min_frames=self.args.min_frames, \
align_lyrics=self.args.align_lyrics, lyrics_slice=self.args.lyrics_slice, \
use_style_prompt=self.args.use_style_prompt, parse_lyrics=self.args.parse_lyrics,
lyrics_shift=self.args.lyrics_shift, downsample_rate=self.args.downsample_rate, \
skip_empty_lyrics=self.args.skip_empty_lyrics, tokenizer_type=self.args.tokenizer_type, precision=self.precision, \
start_time=time.time(), pure_prob=self.args.pure_prob)
# start_time = time.time()
self.train_dataloader = DataLoader(
dataset=ldd,
batch_size=self.args.batch_size, # 每个批次的样本数
shuffle=True, # 是否随机打乱数据
num_workers=4, # 用于加载数据的子进程数
pin_memory=True, # 加速GPU训练
collate_fn=ldd.custom_collate_fn,
persistent_workers=True
)
@property
def is_main(self):
return self.accelerator.is_main_process
def save_checkpoint(self, step, last=False):
self.accelerator.wait_for_everyone()
if self.is_main:
checkpoint = dict(
model_state_dict=self.accelerator.unwrap_model(self.model).state_dict(),
optimizer_state_dict=self.accelerator.unwrap_model(self.optimizer).state_dict(),
ema_model_state_dict=self.ema_model.state_dict(),
scheduler_state_dict=self.scheduler.state_dict(),
step=step,
)
if not os.path.exists(self.checkpoint_path):
os.makedirs(self.checkpoint_path)
if last:
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_last.pt")
print(f"Saved last checkpoint at step {step}")
else:
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_{step}.pt")
def load_checkpoint(self):
if (
not exists(self.checkpoint_path)
or not os.path.exists(self.checkpoint_path)
or not os.listdir(self.checkpoint_path)
):
return 0
self.accelerator.wait_for_everyone()
if "model_last.pt" in os.listdir(self.checkpoint_path):
latest_checkpoint = "model_last.pt"
else:
latest_checkpoint = sorted(
[f for f in os.listdir(self.checkpoint_path) if f.endswith(".pt")],
key=lambda x: int("".join(filter(str.isdigit, x))),
)[-1]
checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location="cpu")
### **1. 过滤 `ema_model` 的不匹配参数**
if self.is_main:
ema_dict = self.ema_model.state_dict()
ema_checkpoint_dict = checkpoint["ema_model_state_dict"]
filtered_ema_dict = {
k: v for k, v in ema_checkpoint_dict.items()
if k in ema_dict and ema_dict[k].shape == v.shape # 仅加载 shape 匹配的参数
}
print(f"Loading {len(filtered_ema_dict)} / {len(ema_checkpoint_dict)} ema_model params")
self.ema_model.load_state_dict(filtered_ema_dict, strict=False)
### **2. 过滤 `model` 的不匹配参数**
model_dict = self.accelerator.unwrap_model(self.model).state_dict()
checkpoint_model_dict = checkpoint["model_state_dict"]
filtered_model_dict = {
k: v for k, v in checkpoint_model_dict.items()
if k in model_dict and model_dict[k].shape == v.shape # 仅加载 shape 匹配的参数
}
print(f"Loading {len(filtered_model_dict)} / {len(checkpoint_model_dict)} model params")
self.accelerator.unwrap_model(self.model).load_state_dict(filtered_model_dict, strict=False)
### **3. 加载优化器、调度器和步数**
if "step" in checkpoint:
if self.scheduler and not self.reset_lr:
self.scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
step = checkpoint["step"]
else:
step = 0
del checkpoint
gc.collect()
print("Checkpoint loaded at step", step)
return step
def train(self, resumable_with_seed: int = None):
train_dataloader = self.train_dataloader
start_step = self.load_checkpoint()
global_step = start_step
if resumable_with_seed > 0:
orig_epoch_step = len(train_dataloader)
skipped_epoch = int(start_step // orig_epoch_step)
skipped_batch = start_step % orig_epoch_step
skipped_dataloader = self.accelerator.skip_first_batches(train_dataloader, num_batches=skipped_batch)
else:
skipped_epoch = 0
for epoch in range(skipped_epoch, self.epochs):
self.model.train()
if resumable_with_seed > 0 and epoch == skipped_epoch:
progress_bar = tqdm(
skipped_dataloader,
desc=f"Epoch {epoch+1}/{self.epochs}",
unit="step",
disable=not self.accelerator.is_local_main_process,
initial=skipped_batch,
total=orig_epoch_step,
smoothing=0.15
)
else:
progress_bar = tqdm(
train_dataloader,
desc=f"Epoch {epoch+1}/{self.epochs}",
unit="step",
disable=not self.accelerator.is_local_main_process,
smoothing=0.15
)
for batch in progress_bar:
with self.accelerator.accumulate(self.model):
text_inputs = batch["lrc"]
mel_spec = batch["latent"].permute(0, 2, 1)
mel_lengths = batch["latent_lengths"]
style_prompt = batch["prompt"]
style_prompt_lens = batch["prompt_lengths"]
start_time = batch["start_time"]
loss, cond, pred = self.model(
mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler,
style_prompt=style_prompt if self.use_style_prompt else None,
style_prompt_lens=style_prompt_lens if self.use_style_prompt else None,
grad_ckpt=self.grad_ckpt, start_time=start_time
)
self.accelerator.backward(loss)
if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
self.optimizer.step()
self.scheduler.step()
self.optimizer.zero_grad()
if self.is_main:
self.ema_model.update()
global_step += 1
if self.accelerator.is_local_main_process:
self.accelerator.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step)
progress_bar.set_postfix(step=str(global_step), loss=loss.item())
if global_step % (self.save_per_updates * self.grad_accumulation_steps) == 0:
self.save_checkpoint(global_step)
if global_step % self.last_per_steps == 0:
self.save_checkpoint(global_step, last=True)
self.save_checkpoint(global_step, last=True)
self.accelerator.end_training()
|