Muhammad Anas Akhtar
Create app.py
53319ee verified
raw
history blame
4.77 kB
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
from transformers import pipeline
import cv2
import numpy as np
import tempfile
import os
# Initialize the object detection pipeline
object_detector = pipeline("object-detection",
model="facebook/detr-resnet-50")
def draw_bounding_boxes(frame, detections):
"""
Draws bounding boxes on the video frame based on the detections.
"""
# Convert numpy array to PIL Image
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(frame_rgb)
draw = ImageDraw.Draw(pil_image)
# Use default font
font = ImageFont.load_default()
for detection in detections:
box = detection['box']
xmin = int(box['xmin'])
ymin = int(box['ymin'])
xmax = int(box['xmax'])
ymax = int(box['ymax'])
# Draw the bounding box
draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3)
# Create label with score
label = detection['label']
score = detection['score']
text = f"{label} {score:.2f}"
# Draw text with background rectangle for visibility
text_bbox = draw.textbbox((xmin, ymin), text, font=font)
draw.rectangle([
(text_bbox[0], text_bbox[1]),
(text_bbox[2], text_bbox[3])
], fill="red")
draw.text((xmin, ymin), text, fill="white", font=font)
# Convert back to numpy array
frame_with_boxes = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
return frame_with_boxes
def process_video(video_path):
"""
Process the video file and return the path to the processed video
"""
try:
# Open the video file
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return None
# Get video properties
fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Create temporary file for output video
temp_output = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
output_path = temp_output.name
temp_output.close()
# Initialize video writer
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
frame_count = 0
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Process every nth frame to speed up processing
process_every_n_frames = 2 # Adjust this value to process more or fewer frames
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
# Only process every nth frame
if frame_count % process_every_n_frames == 0:
# Convert frame to RGB for the model
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Detect objects
detections = object_detector(frame_rgb)
# Draw bounding boxes
frame = draw_bounding_boxes(frame, detections)
# Write the frame
out.write(frame)
# Print progress
progress = (frame_count / total_frames) * 100
print(f"Processing: {progress:.1f}% complete", end='\r')
# Release everything
cap.release()
out.release()
return output_path
except Exception as e:
print(f"Error processing video: {str(e)}")
return None
def detect_objects_in_video(video):
"""
Gradio interface function for video object detection
"""
if video is None:
return None
try:
# Process the video
output_path = process_video(video)
if output_path is None:
return None
return output_path
except Exception as e:
print(f"Error during video processing: {str(e)}")
return None
# Create the Gradio interface
demo = gr.Interface(
fn=detect_objects_in_video,
inputs=[
gr.Video(label="Upload Video")
],
outputs=[
gr.Video(label="Processed Video")
],
title="@GenAILearniverse Project: Video Object Detection",
description="""
Upload a video to detect and track objects within it.
The application will process the video and draw bounding boxes around detected objects
with their labels and confidence scores.
Note: Processing may take some time depending on the video length.
"""
)
if __name__ == "__main__":
demo.launch()