|
|
|
|
|
import streamlit as st |
|
import matplotlib.pyplot as plt |
|
import networkx as nx |
|
import seaborn as sns |
|
from collections import Counter |
|
from itertools import combinations |
|
import numpy as np |
|
import matplotlib.patches as patches |
|
import logging |
|
|
|
|
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', |
|
handlers=[ |
|
logging.StreamHandler(), |
|
logging.FileHandler('app.log') |
|
] |
|
) |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
def correlate_metrics(scores): |
|
""" |
|
Ajusta los scores para mantener correlaciones l贸gicas entre m茅tricas. |
|
|
|
Args: |
|
scores: dict con scores iniciales de vocabulario, estructura, cohesi贸n y claridad |
|
|
|
Returns: |
|
dict con scores ajustados |
|
""" |
|
try: |
|
|
|
|
|
min_cohesion = scores['structure']['normalized_score'] * 0.7 |
|
if scores['cohesion']['normalized_score'] < min_cohesion: |
|
scores['cohesion']['normalized_score'] = min_cohesion |
|
|
|
|
|
|
|
vocab_influence = scores['vocabulary']['normalized_score'] * 0.6 |
|
scores['cohesion']['normalized_score'] = max( |
|
scores['cohesion']['normalized_score'], |
|
vocab_influence |
|
) |
|
|
|
|
|
|
|
max_clarity = scores['cohesion']['normalized_score'] * 1.2 |
|
if scores['clarity']['normalized_score'] > max_clarity: |
|
scores['clarity']['normalized_score'] = max_clarity |
|
|
|
|
|
|
|
struct_max_clarity = scores['structure']['normalized_score'] * 1.1 |
|
scores['clarity']['normalized_score'] = min( |
|
scores['clarity']['normalized_score'], |
|
struct_max_clarity |
|
) |
|
|
|
|
|
for metric in scores: |
|
scores[metric]['normalized_score'] = max(0.0, min(1.0, scores[metric]['normalized_score'])) |
|
|
|
return scores |
|
|
|
except Exception as e: |
|
logger.error(f"Error en correlate_metrics: {str(e)}") |
|
return scores |
|
|
|
|
|
|
|
def analyze_text_dimensions(doc): |
|
""" |
|
Analiza las dimensiones principales del texto manteniendo correlaciones l贸gicas. |
|
""" |
|
try: |
|
|
|
vocab_score, vocab_details = analyze_vocabulary_diversity(doc) |
|
struct_score = analyze_structure(doc) |
|
cohesion_score = analyze_cohesion(doc) |
|
clarity_score, clarity_details = analyze_clarity(doc) |
|
|
|
|
|
scores = { |
|
'vocabulary': { |
|
'normalized_score': vocab_score, |
|
'details': vocab_details |
|
}, |
|
'structure': { |
|
'normalized_score': struct_score, |
|
'details': None |
|
}, |
|
'cohesion': { |
|
'normalized_score': cohesion_score, |
|
'details': None |
|
}, |
|
'clarity': { |
|
'normalized_score': clarity_score, |
|
'details': clarity_details |
|
} |
|
} |
|
|
|
|
|
adjusted_scores = correlate_metrics(scores) |
|
|
|
|
|
logger.info(f""" |
|
Scores originales vs ajustados: |
|
Vocabulario: {vocab_score:.2f} -> {adjusted_scores['vocabulary']['normalized_score']:.2f} |
|
Estructura: {struct_score:.2f} -> {adjusted_scores['structure']['normalized_score']:.2f} |
|
Cohesi贸n: {cohesion_score:.2f} -> {adjusted_scores['cohesion']['normalized_score']:.2f} |
|
Claridad: {clarity_score:.2f} -> {adjusted_scores['clarity']['normalized_score']:.2f} |
|
""") |
|
|
|
return adjusted_scores |
|
|
|
except Exception as e: |
|
logger.error(f"Error en analyze_text_dimensions: {str(e)}") |
|
return { |
|
'vocabulary': {'normalized_score': 0.0, 'details': {}}, |
|
'structure': {'normalized_score': 0.0, 'details': {}}, |
|
'cohesion': {'normalized_score': 0.0, 'details': {}}, |
|
'clarity': {'normalized_score': 0.0, 'details': {}} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
def analyze_clarity(doc): |
|
""" |
|
Analiza la claridad del texto considerando m煤ltiples factores. |
|
""" |
|
try: |
|
sentences = list(doc.sents) |
|
if not sentences: |
|
return 0.0, {} |
|
|
|
|
|
sentence_lengths = [len(sent) for sent in sentences] |
|
avg_length = sum(sentence_lengths) / len(sentences) |
|
|
|
|
|
length_score = normalize_score( |
|
value=avg_length, |
|
metric_type='clarity', |
|
optimal_length=20, |
|
min_threshold=0.60, |
|
target_threshold=0.75 |
|
) |
|
|
|
|
|
connector_count = 0 |
|
connector_weights = { |
|
'CCONJ': 1.0, |
|
'SCONJ': 1.2, |
|
'ADV': 0.8 |
|
} |
|
|
|
for token in doc: |
|
if token.pos_ in connector_weights and token.dep_ in ['cc', 'mark', 'advmod']: |
|
connector_count += connector_weights[token.pos_] |
|
|
|
|
|
connectors_per_sentence = connector_count / len(sentences) if sentences else 0 |
|
connector_score = normalize_score( |
|
value=connectors_per_sentence, |
|
metric_type='clarity', |
|
optimal_connections=1.5, |
|
min_threshold=0.60, |
|
target_threshold=0.75 |
|
) |
|
|
|
|
|
clause_count = 0 |
|
for sent in sentences: |
|
verbs = [token for token in sent if token.pos_ == 'VERB'] |
|
clause_count += len(verbs) |
|
|
|
complexity_raw = clause_count / len(sentences) if sentences else 0 |
|
complexity_score = normalize_score( |
|
value=complexity_raw, |
|
metric_type='clarity', |
|
optimal_depth=2.0, |
|
min_threshold=0.60, |
|
target_threshold=0.75 |
|
) |
|
|
|
|
|
content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']]) |
|
total_words = len([token for token in doc if token.is_alpha]) |
|
density = content_words / total_words if total_words > 0 else 0 |
|
|
|
density_score = normalize_score( |
|
value=density, |
|
metric_type='clarity', |
|
optimal_connections=0.6, |
|
min_threshold=0.60, |
|
target_threshold=0.75 |
|
) |
|
|
|
|
|
weights = { |
|
'length': 0.3, |
|
'connectors': 0.3, |
|
'complexity': 0.2, |
|
'density': 0.2 |
|
} |
|
|
|
clarity_score = ( |
|
weights['length'] * length_score + |
|
weights['connectors'] * connector_score + |
|
weights['complexity'] * complexity_score + |
|
weights['density'] * density_score |
|
) |
|
|
|
details = { |
|
'length_score': length_score, |
|
'connector_score': connector_score, |
|
'complexity_score': complexity_score, |
|
'density_score': density_score, |
|
'avg_sentence_length': avg_length, |
|
'connectors_per_sentence': connectors_per_sentence, |
|
'density': density |
|
} |
|
|
|
|
|
logger.info(f""" |
|
Scores de Claridad: |
|
- Longitud: {length_score:.2f} (avg={avg_length:.1f} palabras) |
|
- Conectores: {connector_score:.2f} (avg={connectors_per_sentence:.1f} por oraci贸n) |
|
- Complejidad: {complexity_score:.2f} (avg={complexity_raw:.1f} cl谩usulas) |
|
- Densidad: {density_score:.2f} ({density*100:.1f}% palabras de contenido) |
|
- Score Final: {clarity_score:.2f} |
|
""") |
|
|
|
return clarity_score, details |
|
|
|
except Exception as e: |
|
logger.error(f"Error en analyze_clarity: {str(e)}") |
|
return 0.0, {} |
|
|
|
|
|
def analyze_vocabulary_diversity(doc): |
|
"""An谩lisis mejorado de la diversidad y calidad del vocabulario""" |
|
try: |
|
|
|
unique_lemmas = {token.lemma_ for token in doc if token.is_alpha} |
|
total_words = len([token for token in doc if token.is_alpha]) |
|
basic_diversity = len(unique_lemmas) / total_words if total_words > 0 else 0 |
|
|
|
|
|
academic_words = 0 |
|
narrative_words = 0 |
|
technical_terms = 0 |
|
|
|
|
|
for token in doc: |
|
if token.is_alpha: |
|
|
|
if token.pos_ in ['NOUN', 'VERB', 'ADJ']: |
|
if any(parent.pos_ == 'NOUN' for parent in token.ancestors): |
|
technical_terms += 1 |
|
|
|
if token.pos_ in ['VERB', 'ADV'] and token.dep_ in ['ROOT', 'advcl']: |
|
narrative_words += 1 |
|
|
|
|
|
avg_sentence_length = sum(len(sent) for sent in doc.sents) / len(list(doc.sents)) |
|
|
|
|
|
weights = { |
|
'diversity': 0.3, |
|
'technical': 0.3, |
|
'narrative': 0.2, |
|
'complexity': 0.2 |
|
} |
|
|
|
scores = { |
|
'diversity': basic_diversity, |
|
'technical': technical_terms / total_words if total_words > 0 else 0, |
|
'narrative': narrative_words / total_words if total_words > 0 else 0, |
|
'complexity': min(1.0, avg_sentence_length / 20) |
|
} |
|
|
|
|
|
final_score = sum(weights[key] * scores[key] for key in weights) |
|
|
|
|
|
details = { |
|
'text_type': 'narrative' if scores['narrative'] > scores['technical'] else 'academic', |
|
'scores': scores |
|
} |
|
|
|
return final_score, details |
|
|
|
except Exception as e: |
|
logger.error(f"Error en analyze_vocabulary_diversity: {str(e)}") |
|
return 0.0, {} |
|
|
|
def analyze_cohesion(doc): |
|
"""Analiza la cohesi贸n textual""" |
|
try: |
|
sentences = list(doc.sents) |
|
if len(sentences) < 2: |
|
logger.warning("Texto demasiado corto para an谩lisis de cohesi贸n") |
|
return 0.0 |
|
|
|
|
|
lexical_connections = 0 |
|
total_possible_connections = 0 |
|
|
|
for i in range(len(sentences)-1): |
|
|
|
sent1_words = {token.lemma_ for token in sentences[i] |
|
if token.is_alpha and not token.is_stop} |
|
sent2_words = {token.lemma_ for token in sentences[i+1] |
|
if token.is_alpha and not token.is_stop} |
|
|
|
if sent1_words and sent2_words: |
|
intersection = len(sent1_words.intersection(sent2_words)) |
|
total_possible = min(len(sent1_words), len(sent2_words)) |
|
|
|
if total_possible > 0: |
|
lexical_score = intersection / total_possible |
|
lexical_connections += lexical_score |
|
total_possible_connections += 1 |
|
|
|
|
|
connector_count = 0 |
|
connector_types = { |
|
'CCONJ': 1.0, |
|
'SCONJ': 1.2, |
|
'ADV': 0.8 |
|
} |
|
|
|
for token in doc: |
|
if (token.pos_ in connector_types and |
|
token.dep_ in ['cc', 'mark', 'advmod'] and |
|
not token.is_stop): |
|
connector_count += connector_types[token.pos_] |
|
|
|
|
|
if total_possible_connections > 0: |
|
lexical_cohesion = lexical_connections / total_possible_connections |
|
else: |
|
lexical_cohesion = 0 |
|
|
|
if len(sentences) > 1: |
|
connector_cohesion = min(1.0, connector_count / (len(sentences) - 1)) |
|
else: |
|
connector_cohesion = 0 |
|
|
|
|
|
weights = { |
|
'lexical': 0.7, |
|
'connectors': 0.3 |
|
} |
|
|
|
cohesion_score = ( |
|
weights['lexical'] * lexical_cohesion + |
|
weights['connectors'] * connector_cohesion |
|
) |
|
|
|
|
|
logger.info(f""" |
|
An谩lisis de Cohesi贸n: |
|
- Conexiones l茅xicas encontradas: {lexical_connections} |
|
- Conexiones posibles: {total_possible_connections} |
|
- Lexical cohesion score: {lexical_cohesion} |
|
- Conectores encontrados: {connector_count} |
|
- Connector cohesion score: {connector_cohesion} |
|
- Score final: {cohesion_score} |
|
""") |
|
|
|
return cohesion_score |
|
|
|
except Exception as e: |
|
logger.error(f"Error en analyze_cohesion: {str(e)}") |
|
return 0.0 |
|
|
|
def analyze_structure(doc): |
|
try: |
|
if len(doc) == 0: |
|
return 0.0 |
|
|
|
structure_scores = [] |
|
for token in doc: |
|
if token.dep_ == 'ROOT': |
|
result = get_dependency_depths(token) |
|
structure_scores.append(result['final_score']) |
|
|
|
if not structure_scores: |
|
return 0.0 |
|
|
|
return min(1.0, sum(structure_scores) / len(structure_scores)) |
|
|
|
except Exception as e: |
|
logger.error(f"Error en analyze_structure: {str(e)}") |
|
return 0.0 |
|
|
|
|
|
|
|
def get_dependency_depths(token, depth=0, analyzed_tokens=None): |
|
""" |
|
Analiza la profundidad y calidad de las relaciones de dependencia. |
|
|
|
Args: |
|
token: Token a analizar |
|
depth: Profundidad actual en el 谩rbol |
|
analyzed_tokens: Set para evitar ciclos en el an谩lisis |
|
|
|
Returns: |
|
dict: Informaci贸n detallada sobre las dependencias |
|
- depths: Lista de profundidades |
|
- relations: Diccionario con tipos de relaciones encontradas |
|
- complexity_score: Puntuaci贸n de complejidad |
|
""" |
|
if analyzed_tokens is None: |
|
analyzed_tokens = set() |
|
|
|
|
|
if token.i in analyzed_tokens: |
|
return { |
|
'depths': [], |
|
'relations': {}, |
|
'complexity_score': 0 |
|
} |
|
|
|
analyzed_tokens.add(token.i) |
|
|
|
|
|
dependency_weights = { |
|
|
|
'nsubj': 1.2, |
|
'obj': 1.1, |
|
'iobj': 1.1, |
|
'ROOT': 1.3, |
|
|
|
|
|
'amod': 0.8, |
|
'advmod': 0.8, |
|
'nmod': 0.9, |
|
|
|
|
|
'csubj': 1.4, |
|
'ccomp': 1.3, |
|
'xcomp': 1.2, |
|
'advcl': 1.2, |
|
|
|
|
|
'conj': 1.1, |
|
'cc': 0.7, |
|
'mark': 0.8, |
|
|
|
|
|
'det': 0.5, |
|
'case': 0.5, |
|
'punct': 0.1 |
|
} |
|
|
|
|
|
current_result = { |
|
'depths': [depth], |
|
'relations': {token.dep_: 1}, |
|
'complexity_score': dependency_weights.get(token.dep_, 0.5) * (depth + 1) |
|
} |
|
|
|
|
|
for child in token.children: |
|
child_result = get_dependency_depths(child, depth + 1, analyzed_tokens) |
|
|
|
|
|
current_result['depths'].extend(child_result['depths']) |
|
|
|
|
|
for rel, count in child_result['relations'].items(): |
|
current_result['relations'][rel] = current_result['relations'].get(rel, 0) + count |
|
|
|
|
|
current_result['complexity_score'] += child_result['complexity_score'] |
|
|
|
|
|
current_result['max_depth'] = max(current_result['depths']) |
|
current_result['avg_depth'] = sum(current_result['depths']) / len(current_result['depths']) |
|
current_result['relation_diversity'] = len(current_result['relations']) |
|
|
|
|
|
structure_bonus = 0 |
|
|
|
|
|
if 'csubj' in current_result['relations'] or 'ccomp' in current_result['relations']: |
|
structure_bonus += 0.3 |
|
|
|
|
|
if 'conj' in current_result['relations'] and 'cc' in current_result['relations']: |
|
structure_bonus += 0.2 |
|
|
|
|
|
if len(set(['amod', 'advmod', 'nmod']) & set(current_result['relations'])) >= 2: |
|
structure_bonus += 0.2 |
|
|
|
current_result['final_score'] = ( |
|
current_result['complexity_score'] * (1 + structure_bonus) |
|
) |
|
|
|
return current_result |
|
|
|
def normalize_score(value, metric_type, |
|
min_threshold=0.0, target_threshold=1.0, |
|
range_factor=2.0, optimal_length=None, |
|
optimal_connections=None, optimal_depth=None): |
|
""" |
|
Normaliza un valor considerando umbrales espec铆ficos por tipo de m茅trica. |
|
|
|
Args: |
|
value: Valor a normalizar |
|
metric_type: Tipo de m茅trica ('vocabulary', 'structure', 'cohesion', 'clarity') |
|
min_threshold: Valor m铆nimo aceptable |
|
target_threshold: Valor objetivo |
|
range_factor: Factor para ajustar el rango |
|
optimal_length: Longitud 贸ptima (opcional) |
|
optimal_connections: N煤mero 贸ptimo de conexiones (opcional) |
|
optimal_depth: Profundidad 贸ptima de estructura (opcional) |
|
|
|
Returns: |
|
float: Valor normalizado entre 0 y 1 |
|
""" |
|
try: |
|
|
|
METRIC_THRESHOLDS = { |
|
'vocabulary': { |
|
'min': 0.60, |
|
'target': 0.75, |
|
'range_factor': 1.5 |
|
}, |
|
'structure': { |
|
'min': 0.65, |
|
'target': 0.80, |
|
'range_factor': 1.8 |
|
}, |
|
'cohesion': { |
|
'min': 0.55, |
|
'target': 0.70, |
|
'range_factor': 1.6 |
|
}, |
|
'clarity': { |
|
'min': 0.60, |
|
'target': 0.75, |
|
'range_factor': 1.7 |
|
} |
|
} |
|
|
|
|
|
if value < 0: |
|
logger.warning(f"Valor negativo recibido: {value}") |
|
return 0.0 |
|
|
|
|
|
if value == 0: |
|
logger.warning("Valor cero recibido") |
|
return 0.0 |
|
|
|
|
|
thresholds = METRIC_THRESHOLDS.get(metric_type, { |
|
'min': min_threshold, |
|
'target': target_threshold, |
|
'range_factor': range_factor |
|
}) |
|
|
|
|
|
if optimal_depth is not None: |
|
reference = optimal_depth |
|
elif optimal_connections is not None: |
|
reference = optimal_connections |
|
elif optimal_length is not None: |
|
reference = optimal_length |
|
else: |
|
reference = thresholds['target'] |
|
|
|
|
|
if reference <= 0: |
|
logger.warning(f"Valor de referencia inv谩lido: {reference}") |
|
return 0.0 |
|
|
|
|
|
if value < thresholds['min']: |
|
|
|
score = (value / thresholds['min']) * 0.5 |
|
elif value < thresholds['target']: |
|
|
|
range_size = thresholds['target'] - thresholds['min'] |
|
progress = (value - thresholds['min']) / range_size |
|
score = 0.5 + (progress * 0.5) |
|
else: |
|
|
|
score = 1.0 |
|
|
|
|
|
if value > (thresholds['target'] * thresholds['range_factor']): |
|
excess = (value - thresholds['target']) / (thresholds['target'] * thresholds['range_factor']) |
|
score = max(0.7, 1.0 - excess) |
|
|
|
|
|
return max(0.0, min(1.0, score)) |
|
|
|
except Exception as e: |
|
logger.error(f"Error en normalize_score: {str(e)}") |
|
return 0.0 |
|
|
|
|
|
|
|
def generate_sentence_graphs(doc): |
|
"""Genera visualizaciones de estructura de oraciones""" |
|
fig, ax = plt.subplots(figsize=(10, 6)) |
|
|
|
plt.close() |
|
return fig |
|
|
|
def generate_word_connections(doc): |
|
"""Genera red de conexiones de palabras""" |
|
fig, ax = plt.subplots(figsize=(10, 6)) |
|
|
|
plt.close() |
|
return fig |
|
|
|
def generate_connection_paths(doc): |
|
"""Genera patrones de conexi贸n""" |
|
fig, ax = plt.subplots(figsize=(10, 6)) |
|
|
|
plt.close() |
|
return fig |
|
|
|
def create_vocabulary_network(doc): |
|
""" |
|
Genera el grafo de red de vocabulario. |
|
""" |
|
G = nx.Graph() |
|
|
|
|
|
words = [token.text.lower() for token in doc if token.is_alpha and not token.is_stop] |
|
word_freq = Counter(words) |
|
|
|
|
|
for word, freq in word_freq.items(): |
|
G.add_node(word, size=freq) |
|
|
|
|
|
window_size = 5 |
|
for i in range(len(words) - window_size): |
|
window = words[i:i+window_size] |
|
for w1, w2 in combinations(set(window), 2): |
|
if G.has_edge(w1, w2): |
|
G[w1][w2]['weight'] += 1 |
|
else: |
|
G.add_edge(w1, w2, weight=1) |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(12, 8)) |
|
pos = nx.spring_layout(G) |
|
|
|
|
|
nx.draw_networkx_nodes(G, pos, |
|
node_size=[G.nodes[node]['size']*100 for node in G.nodes], |
|
node_color='lightblue', |
|
alpha=0.7) |
|
|
|
|
|
nx.draw_networkx_edges(G, pos, |
|
width=[G[u][v]['weight']*0.5 for u,v in G.edges], |
|
alpha=0.5) |
|
|
|
|
|
nx.draw_networkx_labels(G, pos) |
|
|
|
plt.title("Red de Vocabulario") |
|
plt.axis('off') |
|
return fig |
|
|
|
def create_syntax_complexity_graph(doc): |
|
""" |
|
Genera el diagrama de arco de complejidad sint谩ctica. |
|
Muestra la estructura de dependencias con colores basados en la complejidad. |
|
""" |
|
try: |
|
|
|
sentences = list(doc.sents) |
|
if not sentences: |
|
return None |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(12, len(sentences) * 2)) |
|
|
|
|
|
depth_colors = plt.cm.viridis(np.linspace(0, 1, 6)) |
|
|
|
y_offset = 0 |
|
max_x = 0 |
|
|
|
for sent in sentences: |
|
words = [token.text for token in sent] |
|
x_positions = range(len(words)) |
|
max_x = max(max_x, len(words)) |
|
|
|
|
|
plt.plot(x_positions, [y_offset] * len(words), 'k-', alpha=0.2) |
|
plt.scatter(x_positions, [y_offset] * len(words), alpha=0) |
|
|
|
|
|
for i, word in enumerate(words): |
|
plt.annotate(word, (i, y_offset), xytext=(0, -10), |
|
textcoords='offset points', ha='center') |
|
|
|
|
|
for token in sent: |
|
if token.dep_ != "ROOT": |
|
|
|
depth = 0 |
|
current = token |
|
while current.head != current: |
|
depth += 1 |
|
current = current.head |
|
|
|
|
|
start = token.i - sent[0].i |
|
end = token.head.i - sent[0].i |
|
|
|
|
|
height = 0.5 * abs(end - start) |
|
|
|
|
|
color = depth_colors[min(depth, len(depth_colors)-1)] |
|
|
|
|
|
arc = patches.Arc((min(start, end) + abs(end - start)/2, y_offset), |
|
width=abs(end - start), |
|
height=height, |
|
angle=0, |
|
theta1=0, |
|
theta2=180, |
|
color=color, |
|
alpha=0.6) |
|
ax.add_patch(arc) |
|
|
|
y_offset -= 2 |
|
|
|
|
|
plt.xlim(-1, max_x) |
|
plt.ylim(y_offset - 1, 1) |
|
plt.axis('off') |
|
plt.title("Complejidad Sint谩ctica") |
|
|
|
return fig |
|
|
|
except Exception as e: |
|
logger.error(f"Error en create_syntax_complexity_graph: {str(e)}") |
|
return None |
|
|
|
|
|
def create_cohesion_heatmap(doc): |
|
"""Genera un mapa de calor que muestra la cohesi贸n entre p谩rrafos/oraciones.""" |
|
try: |
|
sentences = list(doc.sents) |
|
n_sentences = len(sentences) |
|
|
|
if n_sentences < 2: |
|
return None |
|
|
|
similarity_matrix = np.zeros((n_sentences, n_sentences)) |
|
|
|
for i in range(n_sentences): |
|
for j in range(n_sentences): |
|
sent1_lemmas = {token.lemma_ for token in sentences[i] |
|
if token.is_alpha and not token.is_stop} |
|
sent2_lemmas = {token.lemma_ for token in sentences[j] |
|
if token.is_alpha and not token.is_stop} |
|
|
|
if sent1_lemmas and sent2_lemmas: |
|
intersection = len(sent1_lemmas & sent2_lemmas) |
|
union = len(sent1_lemmas | sent2_lemmas) |
|
similarity_matrix[i, j] = intersection / union if union > 0 else 0 |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(10, 8)) |
|
|
|
sns.heatmap(similarity_matrix, |
|
cmap='YlOrRd', |
|
square=True, |
|
xticklabels=False, |
|
yticklabels=False, |
|
cbar_kws={'label': 'Cohesi贸n'}, |
|
ax=ax) |
|
|
|
plt.title("Mapa de Cohesi贸n Textual") |
|
plt.xlabel("Oraciones") |
|
plt.ylabel("Oraciones") |
|
|
|
plt.tight_layout() |
|
return fig |
|
|
|
except Exception as e: |
|
logger.error(f"Error en create_cohesion_heatmap: {str(e)}") |
|
return None |
|
|