File size: 29,013 Bytes
6f5a069 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 |
#v3/modules/studentact/current_situation_analysis.py
import streamlit as st
import matplotlib.pyplot as plt
import networkx as nx
import seaborn as sns
from collections import Counter
from itertools import combinations
import numpy as np
import matplotlib.patches as patches
import logging
# 2. Configuración básica del logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('app.log')
]
)
# 3. Obtener el logger específico para este módulo
logger = logging.getLogger(__name__)
#########################################################################
def correlate_metrics(scores):
"""
Ajusta los scores para mantener correlaciones lógicas entre métricas.
Args:
scores: dict con scores iniciales de vocabulario, estructura, cohesión y claridad
Returns:
dict con scores ajustados
"""
try:
# 1. Correlación estructura-cohesión
# La cohesión no puede ser menor que estructura * 0.7
min_cohesion = scores['structure']['normalized_score'] * 0.7
if scores['cohesion']['normalized_score'] < min_cohesion:
scores['cohesion']['normalized_score'] = min_cohesion
# 2. Correlación vocabulario-cohesión
# La cohesión léxica depende del vocabulario
vocab_influence = scores['vocabulary']['normalized_score'] * 0.6
scores['cohesion']['normalized_score'] = max(
scores['cohesion']['normalized_score'],
vocab_influence
)
# 3. Correlación cohesión-claridad
# La claridad no puede superar cohesión * 1.2
max_clarity = scores['cohesion']['normalized_score'] * 1.2
if scores['clarity']['normalized_score'] > max_clarity:
scores['clarity']['normalized_score'] = max_clarity
# 4. Correlación estructura-claridad
# La claridad no puede superar estructura * 1.1
struct_max_clarity = scores['structure']['normalized_score'] * 1.1
scores['clarity']['normalized_score'] = min(
scores['clarity']['normalized_score'],
struct_max_clarity
)
# Normalizar todos los scores entre 0 y 1
for metric in scores:
scores[metric]['normalized_score'] = max(0.0, min(1.0, scores[metric]['normalized_score']))
return scores
except Exception as e:
logger.error(f"Error en correlate_metrics: {str(e)}")
return scores
##########################################################################
def analyze_text_dimensions(doc):
"""
Analiza las dimensiones principales del texto manteniendo correlaciones lógicas.
"""
try:
# Obtener scores iniciales
vocab_score, vocab_details = analyze_vocabulary_diversity(doc)
struct_score = analyze_structure(doc)
cohesion_score = analyze_cohesion(doc)
clarity_score, clarity_details = analyze_clarity(doc)
# Crear diccionario de scores inicial
scores = {
'vocabulary': {
'normalized_score': vocab_score,
'details': vocab_details
},
'structure': {
'normalized_score': struct_score,
'details': None
},
'cohesion': {
'normalized_score': cohesion_score,
'details': None
},
'clarity': {
'normalized_score': clarity_score,
'details': clarity_details
}
}
# Ajustar correlaciones entre métricas
adjusted_scores = correlate_metrics(scores)
# Logging para diagnóstico
logger.info(f"""
Scores originales vs ajustados:
Vocabulario: {vocab_score:.2f} -> {adjusted_scores['vocabulary']['normalized_score']:.2f}
Estructura: {struct_score:.2f} -> {adjusted_scores['structure']['normalized_score']:.2f}
Cohesión: {cohesion_score:.2f} -> {adjusted_scores['cohesion']['normalized_score']:.2f}
Claridad: {clarity_score:.2f} -> {adjusted_scores['clarity']['normalized_score']:.2f}
""")
return adjusted_scores
except Exception as e:
logger.error(f"Error en analyze_text_dimensions: {str(e)}")
return {
'vocabulary': {'normalized_score': 0.0, 'details': {}},
'structure': {'normalized_score': 0.0, 'details': {}},
'cohesion': {'normalized_score': 0.0, 'details': {}},
'clarity': {'normalized_score': 0.0, 'details': {}}
}
#############################################################################################
def analyze_clarity(doc):
"""
Analiza la claridad del texto considerando múltiples factores.
"""
try:
sentences = list(doc.sents)
if not sentences:
return 0.0, {}
# 1. Longitud de oraciones
sentence_lengths = [len(sent) for sent in sentences]
avg_length = sum(sentence_lengths) / len(sentences)
# Normalizar usando los umbrales definidos para clarity
length_score = normalize_score(
value=avg_length,
metric_type='clarity',
optimal_length=20, # Una oración ideal tiene ~20 palabras
min_threshold=0.60, # Consistente con METRIC_THRESHOLDS
target_threshold=0.75 # Consistente con METRIC_THRESHOLDS
)
# 2. Análisis de conectores
connector_count = 0
connector_weights = {
'CCONJ': 1.0, # Coordinantes
'SCONJ': 1.2, # Subordinantes
'ADV': 0.8 # Adverbios conectivos
}
for token in doc:
if token.pos_ in connector_weights and token.dep_ in ['cc', 'mark', 'advmod']:
connector_count += connector_weights[token.pos_]
# Normalizar conectores por oración
connectors_per_sentence = connector_count / len(sentences) if sentences else 0
connector_score = normalize_score(
value=connectors_per_sentence,
metric_type='clarity',
optimal_connections=1.5, # ~1.5 conectores por oración es óptimo
min_threshold=0.60,
target_threshold=0.75
)
# 3. Complejidad estructural
clause_count = 0
for sent in sentences:
verbs = [token for token in sent if token.pos_ == 'VERB']
clause_count += len(verbs)
complexity_raw = clause_count / len(sentences) if sentences else 0
complexity_score = normalize_score(
value=complexity_raw,
metric_type='clarity',
optimal_depth=2.0, # ~2 cláusulas por oración es óptimo
min_threshold=0.60,
target_threshold=0.75
)
# 4. Densidad léxica
content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']])
total_words = len([token for token in doc if token.is_alpha])
density = content_words / total_words if total_words > 0 else 0
density_score = normalize_score(
value=density,
metric_type='clarity',
optimal_connections=0.6, # 60% de palabras de contenido es óptimo
min_threshold=0.60,
target_threshold=0.75
)
# Score final ponderado
weights = {
'length': 0.3,
'connectors': 0.3,
'complexity': 0.2,
'density': 0.2
}
clarity_score = (
weights['length'] * length_score +
weights['connectors'] * connector_score +
weights['complexity'] * complexity_score +
weights['density'] * density_score
)
details = {
'length_score': length_score,
'connector_score': connector_score,
'complexity_score': complexity_score,
'density_score': density_score,
'avg_sentence_length': avg_length,
'connectors_per_sentence': connectors_per_sentence,
'density': density
}
# Agregar logging para diagnóstico
logger.info(f"""
Scores de Claridad:
- Longitud: {length_score:.2f} (avg={avg_length:.1f} palabras)
- Conectores: {connector_score:.2f} (avg={connectors_per_sentence:.1f} por oración)
- Complejidad: {complexity_score:.2f} (avg={complexity_raw:.1f} cláusulas)
- Densidad: {density_score:.2f} ({density*100:.1f}% palabras de contenido)
- Score Final: {clarity_score:.2f}
""")
return clarity_score, details
except Exception as e:
logger.error(f"Error en analyze_clarity: {str(e)}")
return 0.0, {}
def analyze_vocabulary_diversity(doc):
"""Análisis mejorado de la diversidad y calidad del vocabulario"""
try:
# 1. Análisis básico de diversidad
unique_lemmas = {token.lemma_ for token in doc if token.is_alpha}
total_words = len([token for token in doc if token.is_alpha])
basic_diversity = len(unique_lemmas) / total_words if total_words > 0 else 0
# 2. Análisis de registro
academic_words = 0
narrative_words = 0
technical_terms = 0
# Clasificar palabras por registro
for token in doc:
if token.is_alpha:
# Detectar términos académicos/técnicos
if token.pos_ in ['NOUN', 'VERB', 'ADJ']:
if any(parent.pos_ == 'NOUN' for parent in token.ancestors):
technical_terms += 1
# Detectar palabras narrativas
if token.pos_ in ['VERB', 'ADV'] and token.dep_ in ['ROOT', 'advcl']:
narrative_words += 1
# 3. Análisis de complejidad sintáctica
avg_sentence_length = sum(len(sent) for sent in doc.sents) / len(list(doc.sents))
# 4. Calcular score ponderado
weights = {
'diversity': 0.3,
'technical': 0.3,
'narrative': 0.2,
'complexity': 0.2
}
scores = {
'diversity': basic_diversity,
'technical': technical_terms / total_words if total_words > 0 else 0,
'narrative': narrative_words / total_words if total_words > 0 else 0,
'complexity': min(1.0, avg_sentence_length / 20) # Normalizado a 20 palabras
}
# Score final ponderado
final_score = sum(weights[key] * scores[key] for key in weights)
# Información adicional para diagnóstico
details = {
'text_type': 'narrative' if scores['narrative'] > scores['technical'] else 'academic',
'scores': scores
}
return final_score, details
except Exception as e:
logger.error(f"Error en analyze_vocabulary_diversity: {str(e)}")
return 0.0, {}
def analyze_cohesion(doc):
"""Analiza la cohesión textual"""
try:
sentences = list(doc.sents)
if len(sentences) < 2:
logger.warning("Texto demasiado corto para análisis de cohesión")
return 0.0
# 1. Análisis de conexiones léxicas
lexical_connections = 0
total_possible_connections = 0
for i in range(len(sentences)-1):
# Obtener lemmas significativos (no stopwords)
sent1_words = {token.lemma_ for token in sentences[i]
if token.is_alpha and not token.is_stop}
sent2_words = {token.lemma_ for token in sentences[i+1]
if token.is_alpha and not token.is_stop}
if sent1_words and sent2_words: # Verificar que ambos conjuntos no estén vacíos
intersection = len(sent1_words.intersection(sent2_words))
total_possible = min(len(sent1_words), len(sent2_words))
if total_possible > 0:
lexical_score = intersection / total_possible
lexical_connections += lexical_score
total_possible_connections += 1
# 2. Análisis de conectores
connector_count = 0
connector_types = {
'CCONJ': 1.0, # Coordinantes
'SCONJ': 1.2, # Subordinantes
'ADV': 0.8 # Adverbios conectivos
}
for token in doc:
if (token.pos_ in connector_types and
token.dep_ in ['cc', 'mark', 'advmod'] and
not token.is_stop):
connector_count += connector_types[token.pos_]
# 3. Cálculo de scores normalizados
if total_possible_connections > 0:
lexical_cohesion = lexical_connections / total_possible_connections
else:
lexical_cohesion = 0
if len(sentences) > 1:
connector_cohesion = min(1.0, connector_count / (len(sentences) - 1))
else:
connector_cohesion = 0
# 4. Score final ponderado
weights = {
'lexical': 0.7,
'connectors': 0.3
}
cohesion_score = (
weights['lexical'] * lexical_cohesion +
weights['connectors'] * connector_cohesion
)
# 5. Logging para diagnóstico
logger.info(f"""
Análisis de Cohesión:
- Conexiones léxicas encontradas: {lexical_connections}
- Conexiones posibles: {total_possible_connections}
- Lexical cohesion score: {lexical_cohesion}
- Conectores encontrados: {connector_count}
- Connector cohesion score: {connector_cohesion}
- Score final: {cohesion_score}
""")
return cohesion_score
except Exception as e:
logger.error(f"Error en analyze_cohesion: {str(e)}")
return 0.0
def analyze_structure(doc):
try:
if len(doc) == 0:
return 0.0
structure_scores = []
for token in doc:
if token.dep_ == 'ROOT':
result = get_dependency_depths(token)
structure_scores.append(result['final_score'])
if not structure_scores:
return 0.0
return min(1.0, sum(structure_scores) / len(structure_scores))
except Exception as e:
logger.error(f"Error en analyze_structure: {str(e)}")
return 0.0
# Funciones auxiliares de análisis
def get_dependency_depths(token, depth=0, analyzed_tokens=None):
"""
Analiza la profundidad y calidad de las relaciones de dependencia.
Args:
token: Token a analizar
depth: Profundidad actual en el árbol
analyzed_tokens: Set para evitar ciclos en el análisis
Returns:
dict: Información detallada sobre las dependencias
- depths: Lista de profundidades
- relations: Diccionario con tipos de relaciones encontradas
- complexity_score: Puntuación de complejidad
"""
if analyzed_tokens is None:
analyzed_tokens = set()
# Evitar ciclos
if token.i in analyzed_tokens:
return {
'depths': [],
'relations': {},
'complexity_score': 0
}
analyzed_tokens.add(token.i)
# Pesos para diferentes tipos de dependencias
dependency_weights = {
# Dependencias principales
'nsubj': 1.2, # Sujeto nominal
'obj': 1.1, # Objeto directo
'iobj': 1.1, # Objeto indirecto
'ROOT': 1.3, # Raíz
# Modificadores
'amod': 0.8, # Modificador adjetival
'advmod': 0.8, # Modificador adverbial
'nmod': 0.9, # Modificador nominal
# Estructuras complejas
'csubj': 1.4, # Cláusula como sujeto
'ccomp': 1.3, # Complemento clausal
'xcomp': 1.2, # Complemento clausal abierto
'advcl': 1.2, # Cláusula adverbial
# Coordinación y subordinación
'conj': 1.1, # Conjunción
'cc': 0.7, # Coordinación
'mark': 0.8, # Marcador
# Otros
'det': 0.5, # Determinante
'case': 0.5, # Caso
'punct': 0.1 # Puntuación
}
# Inicializar resultados
current_result = {
'depths': [depth],
'relations': {token.dep_: 1},
'complexity_score': dependency_weights.get(token.dep_, 0.5) * (depth + 1)
}
# Analizar hijos recursivamente
for child in token.children:
child_result = get_dependency_depths(child, depth + 1, analyzed_tokens)
# Combinar profundidades
current_result['depths'].extend(child_result['depths'])
# Combinar relaciones
for rel, count in child_result['relations'].items():
current_result['relations'][rel] = current_result['relations'].get(rel, 0) + count
# Acumular score de complejidad
current_result['complexity_score'] += child_result['complexity_score']
# Calcular métricas adicionales
current_result['max_depth'] = max(current_result['depths'])
current_result['avg_depth'] = sum(current_result['depths']) / len(current_result['depths'])
current_result['relation_diversity'] = len(current_result['relations'])
# Calcular score ponderado por tipo de estructura
structure_bonus = 0
# Bonus por estructuras complejas
if 'csubj' in current_result['relations'] or 'ccomp' in current_result['relations']:
structure_bonus += 0.3
# Bonus por coordinación balanceada
if 'conj' in current_result['relations'] and 'cc' in current_result['relations']:
structure_bonus += 0.2
# Bonus por modificación rica
if len(set(['amod', 'advmod', 'nmod']) & set(current_result['relations'])) >= 2:
structure_bonus += 0.2
current_result['final_score'] = (
current_result['complexity_score'] * (1 + structure_bonus)
)
return current_result
def normalize_score(value, metric_type,
min_threshold=0.0, target_threshold=1.0,
range_factor=2.0, optimal_length=None,
optimal_connections=None, optimal_depth=None):
"""
Normaliza un valor considerando umbrales específicos por tipo de métrica.
Args:
value: Valor a normalizar
metric_type: Tipo de métrica ('vocabulary', 'structure', 'cohesion', 'clarity')
min_threshold: Valor mínimo aceptable
target_threshold: Valor objetivo
range_factor: Factor para ajustar el rango
optimal_length: Longitud óptima (opcional)
optimal_connections: Número óptimo de conexiones (opcional)
optimal_depth: Profundidad óptima de estructura (opcional)
Returns:
float: Valor normalizado entre 0 y 1
"""
try:
# Definir umbrales por tipo de métrica
METRIC_THRESHOLDS = {
'vocabulary': {
'min': 0.60,
'target': 0.75,
'range_factor': 1.5
},
'structure': {
'min': 0.65,
'target': 0.80,
'range_factor': 1.8
},
'cohesion': {
'min': 0.55,
'target': 0.70,
'range_factor': 1.6
},
'clarity': {
'min': 0.60,
'target': 0.75,
'range_factor': 1.7
}
}
# Validar valores negativos o cero
if value < 0:
logger.warning(f"Valor negativo recibido: {value}")
return 0.0
# Manejar caso donde el valor es cero
if value == 0:
logger.warning("Valor cero recibido")
return 0.0
# Obtener umbrales específicos para el tipo de métrica
thresholds = METRIC_THRESHOLDS.get(metric_type, {
'min': min_threshold,
'target': target_threshold,
'range_factor': range_factor
})
# Identificar el valor de referencia a usar
if optimal_depth is not None:
reference = optimal_depth
elif optimal_connections is not None:
reference = optimal_connections
elif optimal_length is not None:
reference = optimal_length
else:
reference = thresholds['target']
# Validar valor de referencia
if reference <= 0:
logger.warning(f"Valor de referencia inválido: {reference}")
return 0.0
# Calcular score basado en umbrales
if value < thresholds['min']:
# Valor por debajo del mínimo
score = (value / thresholds['min']) * 0.5 # Máximo 0.5 para valores bajo el mínimo
elif value < thresholds['target']:
# Valor entre mínimo y objetivo
range_size = thresholds['target'] - thresholds['min']
progress = (value - thresholds['min']) / range_size
score = 0.5 + (progress * 0.5) # Escala entre 0.5 y 1.0
else:
# Valor alcanza o supera el objetivo
score = 1.0
# Penalizar valores muy por encima del objetivo
if value > (thresholds['target'] * thresholds['range_factor']):
excess = (value - thresholds['target']) / (thresholds['target'] * thresholds['range_factor'])
score = max(0.7, 1.0 - excess) # No bajar de 0.7 para valores altos
# Asegurar que el resultado esté entre 0 y 1
return max(0.0, min(1.0, score))
except Exception as e:
logger.error(f"Error en normalize_score: {str(e)}")
return 0.0
# Funciones de generación de gráficos
def generate_sentence_graphs(doc):
"""Genera visualizaciones de estructura de oraciones"""
fig, ax = plt.subplots(figsize=(10, 6))
# Implementar visualización
plt.close()
return fig
def generate_word_connections(doc):
"""Genera red de conexiones de palabras"""
fig, ax = plt.subplots(figsize=(10, 6))
# Implementar visualización
plt.close()
return fig
def generate_connection_paths(doc):
"""Genera patrones de conexión"""
fig, ax = plt.subplots(figsize=(10, 6))
# Implementar visualización
plt.close()
return fig
def create_vocabulary_network(doc):
"""
Genera el grafo de red de vocabulario.
"""
G = nx.Graph()
# Crear nodos para palabras significativas
words = [token.text.lower() for token in doc if token.is_alpha and not token.is_stop]
word_freq = Counter(words)
# Añadir nodos con tamaño basado en frecuencia
for word, freq in word_freq.items():
G.add_node(word, size=freq)
# Crear conexiones basadas en co-ocurrencia
window_size = 5
for i in range(len(words) - window_size):
window = words[i:i+window_size]
for w1, w2 in combinations(set(window), 2):
if G.has_edge(w1, w2):
G[w1][w2]['weight'] += 1
else:
G.add_edge(w1, w2, weight=1)
# Crear visualización
fig, ax = plt.subplots(figsize=(12, 8))
pos = nx.spring_layout(G)
# Dibujar nodos
nx.draw_networkx_nodes(G, pos,
node_size=[G.nodes[node]['size']*100 for node in G.nodes],
node_color='lightblue',
alpha=0.7)
# Dibujar conexiones
nx.draw_networkx_edges(G, pos,
width=[G[u][v]['weight']*0.5 for u,v in G.edges],
alpha=0.5)
# Añadir etiquetas
nx.draw_networkx_labels(G, pos)
plt.title("Red de Vocabulario")
plt.axis('off')
return fig
def create_syntax_complexity_graph(doc):
"""
Genera el diagrama de arco de complejidad sintáctica.
Muestra la estructura de dependencias con colores basados en la complejidad.
"""
try:
# Preparar datos para la visualización
sentences = list(doc.sents)
if not sentences:
return None
# Crear figura para el gráfico
fig, ax = plt.subplots(figsize=(12, len(sentences) * 2))
# Colores para diferentes niveles de profundidad
depth_colors = plt.cm.viridis(np.linspace(0, 1, 6))
y_offset = 0
max_x = 0
for sent in sentences:
words = [token.text for token in sent]
x_positions = range(len(words))
max_x = max(max_x, len(words))
# Dibujar palabras
plt.plot(x_positions, [y_offset] * len(words), 'k-', alpha=0.2)
plt.scatter(x_positions, [y_offset] * len(words), alpha=0)
# Añadir texto
for i, word in enumerate(words):
plt.annotate(word, (i, y_offset), xytext=(0, -10),
textcoords='offset points', ha='center')
# Dibujar arcos de dependencia
for token in sent:
if token.dep_ != "ROOT":
# Calcular profundidad de dependencia
depth = 0
current = token
while current.head != current:
depth += 1
current = current.head
# Determinar posiciones para el arco
start = token.i - sent[0].i
end = token.head.i - sent[0].i
# Altura del arco basada en la distancia entre palabras
height = 0.5 * abs(end - start)
# Color basado en la profundidad
color = depth_colors[min(depth, len(depth_colors)-1)]
# Crear arco
arc = patches.Arc((min(start, end) + abs(end - start)/2, y_offset),
width=abs(end - start),
height=height,
angle=0,
theta1=0,
theta2=180,
color=color,
alpha=0.6)
ax.add_patch(arc)
y_offset -= 2
# Configurar el gráfico
plt.xlim(-1, max_x)
plt.ylim(y_offset - 1, 1)
plt.axis('off')
plt.title("Complejidad Sintáctica")
return fig
except Exception as e:
logger.error(f"Error en create_syntax_complexity_graph: {str(e)}")
return None
def create_cohesion_heatmap(doc):
"""Genera un mapa de calor que muestra la cohesión entre párrafos/oraciones."""
try:
sentences = list(doc.sents)
n_sentences = len(sentences)
if n_sentences < 2:
return None
similarity_matrix = np.zeros((n_sentences, n_sentences))
for i in range(n_sentences):
for j in range(n_sentences):
sent1_lemmas = {token.lemma_ for token in sentences[i]
if token.is_alpha and not token.is_stop}
sent2_lemmas = {token.lemma_ for token in sentences[j]
if token.is_alpha and not token.is_stop}
if sent1_lemmas and sent2_lemmas:
intersection = len(sent1_lemmas & sent2_lemmas) # Corregido aquí
union = len(sent1_lemmas | sent2_lemmas) # Y aquí
similarity_matrix[i, j] = intersection / union if union > 0 else 0
# Crear visualización
fig, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(similarity_matrix,
cmap='YlOrRd',
square=True,
xticklabels=False,
yticklabels=False,
cbar_kws={'label': 'Cohesión'},
ax=ax)
plt.title("Mapa de Cohesión Textual")
plt.xlabel("Oraciones")
plt.ylabel("Oraciones")
plt.tight_layout()
return fig
except Exception as e:
logger.error(f"Error en create_cohesion_heatmap: {str(e)}")
return None
|