Create current_situation_analysis.py
Browse files
modules/studentact/current_situation_analysis.py
ADDED
@@ -0,0 +1,810 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#v3/modules/studentact/current_situation_analysis.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import networkx as nx
|
6 |
+
import seaborn as sns
|
7 |
+
from collections import Counter
|
8 |
+
from itertools import combinations
|
9 |
+
import numpy as np
|
10 |
+
import matplotlib.patches as patches
|
11 |
+
import logging
|
12 |
+
|
13 |
+
# 2. Configuraci贸n b谩sica del logging
|
14 |
+
logging.basicConfig(
|
15 |
+
level=logging.INFO,
|
16 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
17 |
+
handlers=[
|
18 |
+
logging.StreamHandler(),
|
19 |
+
logging.FileHandler('app.log')
|
20 |
+
]
|
21 |
+
)
|
22 |
+
|
23 |
+
# 3. Obtener el logger espec铆fico para este m贸dulo
|
24 |
+
logger = logging.getLogger(__name__)
|
25 |
+
|
26 |
+
#########################################################################
|
27 |
+
|
28 |
+
def correlate_metrics(scores):
|
29 |
+
"""
|
30 |
+
Ajusta los scores para mantener correlaciones l贸gicas entre m茅tricas.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
scores: dict con scores iniciales de vocabulario, estructura, cohesi贸n y claridad
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
dict con scores ajustados
|
37 |
+
"""
|
38 |
+
try:
|
39 |
+
# 1. Correlaci贸n estructura-cohesi贸n
|
40 |
+
# La cohesi贸n no puede ser menor que estructura * 0.7
|
41 |
+
min_cohesion = scores['structure']['normalized_score'] * 0.7
|
42 |
+
if scores['cohesion']['normalized_score'] < min_cohesion:
|
43 |
+
scores['cohesion']['normalized_score'] = min_cohesion
|
44 |
+
|
45 |
+
# 2. Correlaci贸n vocabulario-cohesi贸n
|
46 |
+
# La cohesi贸n l茅xica depende del vocabulario
|
47 |
+
vocab_influence = scores['vocabulary']['normalized_score'] * 0.6
|
48 |
+
scores['cohesion']['normalized_score'] = max(
|
49 |
+
scores['cohesion']['normalized_score'],
|
50 |
+
vocab_influence
|
51 |
+
)
|
52 |
+
|
53 |
+
# 3. Correlaci贸n cohesi贸n-claridad
|
54 |
+
# La claridad no puede superar cohesi贸n * 1.2
|
55 |
+
max_clarity = scores['cohesion']['normalized_score'] * 1.2
|
56 |
+
if scores['clarity']['normalized_score'] > max_clarity:
|
57 |
+
scores['clarity']['normalized_score'] = max_clarity
|
58 |
+
|
59 |
+
# 4. Correlaci贸n estructura-claridad
|
60 |
+
# La claridad no puede superar estructura * 1.1
|
61 |
+
struct_max_clarity = scores['structure']['normalized_score'] * 1.1
|
62 |
+
scores['clarity']['normalized_score'] = min(
|
63 |
+
scores['clarity']['normalized_score'],
|
64 |
+
struct_max_clarity
|
65 |
+
)
|
66 |
+
|
67 |
+
# Normalizar todos los scores entre 0 y 1
|
68 |
+
for metric in scores:
|
69 |
+
scores[metric]['normalized_score'] = max(0.0, min(1.0, scores[metric]['normalized_score']))
|
70 |
+
|
71 |
+
return scores
|
72 |
+
|
73 |
+
except Exception as e:
|
74 |
+
logger.error(f"Error en correlate_metrics: {str(e)}")
|
75 |
+
return scores
|
76 |
+
|
77 |
+
##########################################################################
|
78 |
+
|
79 |
+
def analyze_text_dimensions(doc):
|
80 |
+
"""
|
81 |
+
Analiza las dimensiones principales del texto manteniendo correlaciones l贸gicas.
|
82 |
+
"""
|
83 |
+
try:
|
84 |
+
# Obtener scores iniciales
|
85 |
+
vocab_score, vocab_details = analyze_vocabulary_diversity(doc)
|
86 |
+
struct_score = analyze_structure(doc)
|
87 |
+
cohesion_score = analyze_cohesion(doc)
|
88 |
+
clarity_score, clarity_details = analyze_clarity(doc)
|
89 |
+
|
90 |
+
# Crear diccionario de scores inicial
|
91 |
+
scores = {
|
92 |
+
'vocabulary': {
|
93 |
+
'normalized_score': vocab_score,
|
94 |
+
'details': vocab_details
|
95 |
+
},
|
96 |
+
'structure': {
|
97 |
+
'normalized_score': struct_score,
|
98 |
+
'details': None
|
99 |
+
},
|
100 |
+
'cohesion': {
|
101 |
+
'normalized_score': cohesion_score,
|
102 |
+
'details': None
|
103 |
+
},
|
104 |
+
'clarity': {
|
105 |
+
'normalized_score': clarity_score,
|
106 |
+
'details': clarity_details
|
107 |
+
}
|
108 |
+
}
|
109 |
+
|
110 |
+
# Ajustar correlaciones entre m茅tricas
|
111 |
+
adjusted_scores = correlate_metrics(scores)
|
112 |
+
|
113 |
+
# Logging para diagn贸stico
|
114 |
+
logger.info(f"""
|
115 |
+
Scores originales vs ajustados:
|
116 |
+
Vocabulario: {vocab_score:.2f} -> {adjusted_scores['vocabulary']['normalized_score']:.2f}
|
117 |
+
Estructura: {struct_score:.2f} -> {adjusted_scores['structure']['normalized_score']:.2f}
|
118 |
+
Cohesi贸n: {cohesion_score:.2f} -> {adjusted_scores['cohesion']['normalized_score']:.2f}
|
119 |
+
Claridad: {clarity_score:.2f} -> {adjusted_scores['clarity']['normalized_score']:.2f}
|
120 |
+
""")
|
121 |
+
|
122 |
+
return adjusted_scores
|
123 |
+
|
124 |
+
except Exception as e:
|
125 |
+
logger.error(f"Error en analyze_text_dimensions: {str(e)}")
|
126 |
+
return {
|
127 |
+
'vocabulary': {'normalized_score': 0.0, 'details': {}},
|
128 |
+
'structure': {'normalized_score': 0.0, 'details': {}},
|
129 |
+
'cohesion': {'normalized_score': 0.0, 'details': {}},
|
130 |
+
'clarity': {'normalized_score': 0.0, 'details': {}}
|
131 |
+
}
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
#############################################################################################
|
136 |
+
|
137 |
+
def analyze_clarity(doc):
|
138 |
+
"""
|
139 |
+
Analiza la claridad del texto considerando m煤ltiples factores.
|
140 |
+
"""
|
141 |
+
try:
|
142 |
+
sentences = list(doc.sents)
|
143 |
+
if not sentences:
|
144 |
+
return 0.0, {}
|
145 |
+
|
146 |
+
# 1. Longitud de oraciones
|
147 |
+
sentence_lengths = [len(sent) for sent in sentences]
|
148 |
+
avg_length = sum(sentence_lengths) / len(sentences)
|
149 |
+
|
150 |
+
# Normalizar usando los umbrales definidos para clarity
|
151 |
+
length_score = normalize_score(
|
152 |
+
value=avg_length,
|
153 |
+
metric_type='clarity',
|
154 |
+
optimal_length=20, # Una oraci贸n ideal tiene ~20 palabras
|
155 |
+
min_threshold=0.60, # Consistente con METRIC_THRESHOLDS
|
156 |
+
target_threshold=0.75 # Consistente con METRIC_THRESHOLDS
|
157 |
+
)
|
158 |
+
|
159 |
+
# 2. An谩lisis de conectores
|
160 |
+
connector_count = 0
|
161 |
+
connector_weights = {
|
162 |
+
'CCONJ': 1.0, # Coordinantes
|
163 |
+
'SCONJ': 1.2, # Subordinantes
|
164 |
+
'ADV': 0.8 # Adverbios conectivos
|
165 |
+
}
|
166 |
+
|
167 |
+
for token in doc:
|
168 |
+
if token.pos_ in connector_weights and token.dep_ in ['cc', 'mark', 'advmod']:
|
169 |
+
connector_count += connector_weights[token.pos_]
|
170 |
+
|
171 |
+
# Normalizar conectores por oraci贸n
|
172 |
+
connectors_per_sentence = connector_count / len(sentences) if sentences else 0
|
173 |
+
connector_score = normalize_score(
|
174 |
+
value=connectors_per_sentence,
|
175 |
+
metric_type='clarity',
|
176 |
+
optimal_connections=1.5, # ~1.5 conectores por oraci贸n es 贸ptimo
|
177 |
+
min_threshold=0.60,
|
178 |
+
target_threshold=0.75
|
179 |
+
)
|
180 |
+
|
181 |
+
# 3. Complejidad estructural
|
182 |
+
clause_count = 0
|
183 |
+
for sent in sentences:
|
184 |
+
verbs = [token for token in sent if token.pos_ == 'VERB']
|
185 |
+
clause_count += len(verbs)
|
186 |
+
|
187 |
+
complexity_raw = clause_count / len(sentences) if sentences else 0
|
188 |
+
complexity_score = normalize_score(
|
189 |
+
value=complexity_raw,
|
190 |
+
metric_type='clarity',
|
191 |
+
optimal_depth=2.0, # ~2 cl谩usulas por oraci贸n es 贸ptimo
|
192 |
+
min_threshold=0.60,
|
193 |
+
target_threshold=0.75
|
194 |
+
)
|
195 |
+
|
196 |
+
# 4. Densidad l茅xica
|
197 |
+
content_words = len([token for token in doc if token.pos_ in ['NOUN', 'VERB', 'ADJ', 'ADV']])
|
198 |
+
total_words = len([token for token in doc if token.is_alpha])
|
199 |
+
density = content_words / total_words if total_words > 0 else 0
|
200 |
+
|
201 |
+
density_score = normalize_score(
|
202 |
+
value=density,
|
203 |
+
metric_type='clarity',
|
204 |
+
optimal_connections=0.6, # 60% de palabras de contenido es 贸ptimo
|
205 |
+
min_threshold=0.60,
|
206 |
+
target_threshold=0.75
|
207 |
+
)
|
208 |
+
|
209 |
+
# Score final ponderado
|
210 |
+
weights = {
|
211 |
+
'length': 0.3,
|
212 |
+
'connectors': 0.3,
|
213 |
+
'complexity': 0.2,
|
214 |
+
'density': 0.2
|
215 |
+
}
|
216 |
+
|
217 |
+
clarity_score = (
|
218 |
+
weights['length'] * length_score +
|
219 |
+
weights['connectors'] * connector_score +
|
220 |
+
weights['complexity'] * complexity_score +
|
221 |
+
weights['density'] * density_score
|
222 |
+
)
|
223 |
+
|
224 |
+
details = {
|
225 |
+
'length_score': length_score,
|
226 |
+
'connector_score': connector_score,
|
227 |
+
'complexity_score': complexity_score,
|
228 |
+
'density_score': density_score,
|
229 |
+
'avg_sentence_length': avg_length,
|
230 |
+
'connectors_per_sentence': connectors_per_sentence,
|
231 |
+
'density': density
|
232 |
+
}
|
233 |
+
|
234 |
+
# Agregar logging para diagn贸stico
|
235 |
+
logger.info(f"""
|
236 |
+
Scores de Claridad:
|
237 |
+
- Longitud: {length_score:.2f} (avg={avg_length:.1f} palabras)
|
238 |
+
- Conectores: {connector_score:.2f} (avg={connectors_per_sentence:.1f} por oraci贸n)
|
239 |
+
- Complejidad: {complexity_score:.2f} (avg={complexity_raw:.1f} cl谩usulas)
|
240 |
+
- Densidad: {density_score:.2f} ({density*100:.1f}% palabras de contenido)
|
241 |
+
- Score Final: {clarity_score:.2f}
|
242 |
+
""")
|
243 |
+
|
244 |
+
return clarity_score, details
|
245 |
+
|
246 |
+
except Exception as e:
|
247 |
+
logger.error(f"Error en analyze_clarity: {str(e)}")
|
248 |
+
return 0.0, {}
|
249 |
+
|
250 |
+
|
251 |
+
def analyze_vocabulary_diversity(doc):
|
252 |
+
"""An谩lisis mejorado de la diversidad y calidad del vocabulario"""
|
253 |
+
try:
|
254 |
+
# 1. An谩lisis b谩sico de diversidad
|
255 |
+
unique_lemmas = {token.lemma_ for token in doc if token.is_alpha}
|
256 |
+
total_words = len([token for token in doc if token.is_alpha])
|
257 |
+
basic_diversity = len(unique_lemmas) / total_words if total_words > 0 else 0
|
258 |
+
|
259 |
+
# 2. An谩lisis de registro
|
260 |
+
academic_words = 0
|
261 |
+
narrative_words = 0
|
262 |
+
technical_terms = 0
|
263 |
+
|
264 |
+
# Clasificar palabras por registro
|
265 |
+
for token in doc:
|
266 |
+
if token.is_alpha:
|
267 |
+
# Detectar t茅rminos acad茅micos/t茅cnicos
|
268 |
+
if token.pos_ in ['NOUN', 'VERB', 'ADJ']:
|
269 |
+
if any(parent.pos_ == 'NOUN' for parent in token.ancestors):
|
270 |
+
technical_terms += 1
|
271 |
+
# Detectar palabras narrativas
|
272 |
+
if token.pos_ in ['VERB', 'ADV'] and token.dep_ in ['ROOT', 'advcl']:
|
273 |
+
narrative_words += 1
|
274 |
+
|
275 |
+
# 3. An谩lisis de complejidad sint谩ctica
|
276 |
+
avg_sentence_length = sum(len(sent) for sent in doc.sents) / len(list(doc.sents))
|
277 |
+
|
278 |
+
# 4. Calcular score ponderado
|
279 |
+
weights = {
|
280 |
+
'diversity': 0.3,
|
281 |
+
'technical': 0.3,
|
282 |
+
'narrative': 0.2,
|
283 |
+
'complexity': 0.2
|
284 |
+
}
|
285 |
+
|
286 |
+
scores = {
|
287 |
+
'diversity': basic_diversity,
|
288 |
+
'technical': technical_terms / total_words if total_words > 0 else 0,
|
289 |
+
'narrative': narrative_words / total_words if total_words > 0 else 0,
|
290 |
+
'complexity': min(1.0, avg_sentence_length / 20) # Normalizado a 20 palabras
|
291 |
+
}
|
292 |
+
|
293 |
+
# Score final ponderado
|
294 |
+
final_score = sum(weights[key] * scores[key] for key in weights)
|
295 |
+
|
296 |
+
# Informaci贸n adicional para diagn贸stico
|
297 |
+
details = {
|
298 |
+
'text_type': 'narrative' if scores['narrative'] > scores['technical'] else 'academic',
|
299 |
+
'scores': scores
|
300 |
+
}
|
301 |
+
|
302 |
+
return final_score, details
|
303 |
+
|
304 |
+
except Exception as e:
|
305 |
+
logger.error(f"Error en analyze_vocabulary_diversity: {str(e)}")
|
306 |
+
return 0.0, {}
|
307 |
+
|
308 |
+
def analyze_cohesion(doc):
|
309 |
+
"""Analiza la cohesi贸n textual"""
|
310 |
+
try:
|
311 |
+
sentences = list(doc.sents)
|
312 |
+
if len(sentences) < 2:
|
313 |
+
logger.warning("Texto demasiado corto para an谩lisis de cohesi贸n")
|
314 |
+
return 0.0
|
315 |
+
|
316 |
+
# 1. An谩lisis de conexiones l茅xicas
|
317 |
+
lexical_connections = 0
|
318 |
+
total_possible_connections = 0
|
319 |
+
|
320 |
+
for i in range(len(sentences)-1):
|
321 |
+
# Obtener lemmas significativos (no stopwords)
|
322 |
+
sent1_words = {token.lemma_ for token in sentences[i]
|
323 |
+
if token.is_alpha and not token.is_stop}
|
324 |
+
sent2_words = {token.lemma_ for token in sentences[i+1]
|
325 |
+
if token.is_alpha and not token.is_stop}
|
326 |
+
|
327 |
+
if sent1_words and sent2_words: # Verificar que ambos conjuntos no est茅n vac铆os
|
328 |
+
intersection = len(sent1_words.intersection(sent2_words))
|
329 |
+
total_possible = min(len(sent1_words), len(sent2_words))
|
330 |
+
|
331 |
+
if total_possible > 0:
|
332 |
+
lexical_score = intersection / total_possible
|
333 |
+
lexical_connections += lexical_score
|
334 |
+
total_possible_connections += 1
|
335 |
+
|
336 |
+
# 2. An谩lisis de conectores
|
337 |
+
connector_count = 0
|
338 |
+
connector_types = {
|
339 |
+
'CCONJ': 1.0, # Coordinantes
|
340 |
+
'SCONJ': 1.2, # Subordinantes
|
341 |
+
'ADV': 0.8 # Adverbios conectivos
|
342 |
+
}
|
343 |
+
|
344 |
+
for token in doc:
|
345 |
+
if (token.pos_ in connector_types and
|
346 |
+
token.dep_ in ['cc', 'mark', 'advmod'] and
|
347 |
+
not token.is_stop):
|
348 |
+
connector_count += connector_types[token.pos_]
|
349 |
+
|
350 |
+
# 3. C谩lculo de scores normalizados
|
351 |
+
if total_possible_connections > 0:
|
352 |
+
lexical_cohesion = lexical_connections / total_possible_connections
|
353 |
+
else:
|
354 |
+
lexical_cohesion = 0
|
355 |
+
|
356 |
+
if len(sentences) > 1:
|
357 |
+
connector_cohesion = min(1.0, connector_count / (len(sentences) - 1))
|
358 |
+
else:
|
359 |
+
connector_cohesion = 0
|
360 |
+
|
361 |
+
# 4. Score final ponderado
|
362 |
+
weights = {
|
363 |
+
'lexical': 0.7,
|
364 |
+
'connectors': 0.3
|
365 |
+
}
|
366 |
+
|
367 |
+
cohesion_score = (
|
368 |
+
weights['lexical'] * lexical_cohesion +
|
369 |
+
weights['connectors'] * connector_cohesion
|
370 |
+
)
|
371 |
+
|
372 |
+
# 5. Logging para diagn贸stico
|
373 |
+
logger.info(f"""
|
374 |
+
An谩lisis de Cohesi贸n:
|
375 |
+
- Conexiones l茅xicas encontradas: {lexical_connections}
|
376 |
+
- Conexiones posibles: {total_possible_connections}
|
377 |
+
- Lexical cohesion score: {lexical_cohesion}
|
378 |
+
- Conectores encontrados: {connector_count}
|
379 |
+
- Connector cohesion score: {connector_cohesion}
|
380 |
+
- Score final: {cohesion_score}
|
381 |
+
""")
|
382 |
+
|
383 |
+
return cohesion_score
|
384 |
+
|
385 |
+
except Exception as e:
|
386 |
+
logger.error(f"Error en analyze_cohesion: {str(e)}")
|
387 |
+
return 0.0
|
388 |
+
|
389 |
+
def analyze_structure(doc):
|
390 |
+
try:
|
391 |
+
if len(doc) == 0:
|
392 |
+
return 0.0
|
393 |
+
|
394 |
+
structure_scores = []
|
395 |
+
for token in doc:
|
396 |
+
if token.dep_ == 'ROOT':
|
397 |
+
result = get_dependency_depths(token)
|
398 |
+
structure_scores.append(result['final_score'])
|
399 |
+
|
400 |
+
if not structure_scores:
|
401 |
+
return 0.0
|
402 |
+
|
403 |
+
return min(1.0, sum(structure_scores) / len(structure_scores))
|
404 |
+
|
405 |
+
except Exception as e:
|
406 |
+
logger.error(f"Error en analyze_structure: {str(e)}")
|
407 |
+
return 0.0
|
408 |
+
|
409 |
+
# Funciones auxiliares de an谩lisis
|
410 |
+
|
411 |
+
def get_dependency_depths(token, depth=0, analyzed_tokens=None):
|
412 |
+
"""
|
413 |
+
Analiza la profundidad y calidad de las relaciones de dependencia.
|
414 |
+
|
415 |
+
Args:
|
416 |
+
token: Token a analizar
|
417 |
+
depth: Profundidad actual en el 谩rbol
|
418 |
+
analyzed_tokens: Set para evitar ciclos en el an谩lisis
|
419 |
+
|
420 |
+
Returns:
|
421 |
+
dict: Informaci贸n detallada sobre las dependencias
|
422 |
+
- depths: Lista de profundidades
|
423 |
+
- relations: Diccionario con tipos de relaciones encontradas
|
424 |
+
- complexity_score: Puntuaci贸n de complejidad
|
425 |
+
"""
|
426 |
+
if analyzed_tokens is None:
|
427 |
+
analyzed_tokens = set()
|
428 |
+
|
429 |
+
# Evitar ciclos
|
430 |
+
if token.i in analyzed_tokens:
|
431 |
+
return {
|
432 |
+
'depths': [],
|
433 |
+
'relations': {},
|
434 |
+
'complexity_score': 0
|
435 |
+
}
|
436 |
+
|
437 |
+
analyzed_tokens.add(token.i)
|
438 |
+
|
439 |
+
# Pesos para diferentes tipos de dependencias
|
440 |
+
dependency_weights = {
|
441 |
+
# Dependencias principales
|
442 |
+
'nsubj': 1.2, # Sujeto nominal
|
443 |
+
'obj': 1.1, # Objeto directo
|
444 |
+
'iobj': 1.1, # Objeto indirecto
|
445 |
+
'ROOT': 1.3, # Ra铆z
|
446 |
+
|
447 |
+
# Modificadores
|
448 |
+
'amod': 0.8, # Modificador adjetival
|
449 |
+
'advmod': 0.8, # Modificador adverbial
|
450 |
+
'nmod': 0.9, # Modificador nominal
|
451 |
+
|
452 |
+
# Estructuras complejas
|
453 |
+
'csubj': 1.4, # Cl谩usula como sujeto
|
454 |
+
'ccomp': 1.3, # Complemento clausal
|
455 |
+
'xcomp': 1.2, # Complemento clausal abierto
|
456 |
+
'advcl': 1.2, # Cl谩usula adverbial
|
457 |
+
|
458 |
+
# Coordinaci贸n y subordinaci贸n
|
459 |
+
'conj': 1.1, # Conjunci贸n
|
460 |
+
'cc': 0.7, # Coordinaci贸n
|
461 |
+
'mark': 0.8, # Marcador
|
462 |
+
|
463 |
+
# Otros
|
464 |
+
'det': 0.5, # Determinante
|
465 |
+
'case': 0.5, # Caso
|
466 |
+
'punct': 0.1 # Puntuaci贸n
|
467 |
+
}
|
468 |
+
|
469 |
+
# Inicializar resultados
|
470 |
+
current_result = {
|
471 |
+
'depths': [depth],
|
472 |
+
'relations': {token.dep_: 1},
|
473 |
+
'complexity_score': dependency_weights.get(token.dep_, 0.5) * (depth + 1)
|
474 |
+
}
|
475 |
+
|
476 |
+
# Analizar hijos recursivamente
|
477 |
+
for child in token.children:
|
478 |
+
child_result = get_dependency_depths(child, depth + 1, analyzed_tokens)
|
479 |
+
|
480 |
+
# Combinar profundidades
|
481 |
+
current_result['depths'].extend(child_result['depths'])
|
482 |
+
|
483 |
+
# Combinar relaciones
|
484 |
+
for rel, count in child_result['relations'].items():
|
485 |
+
current_result['relations'][rel] = current_result['relations'].get(rel, 0) + count
|
486 |
+
|
487 |
+
# Acumular score de complejidad
|
488 |
+
current_result['complexity_score'] += child_result['complexity_score']
|
489 |
+
|
490 |
+
# Calcular m茅tricas adicionales
|
491 |
+
current_result['max_depth'] = max(current_result['depths'])
|
492 |
+
current_result['avg_depth'] = sum(current_result['depths']) / len(current_result['depths'])
|
493 |
+
current_result['relation_diversity'] = len(current_result['relations'])
|
494 |
+
|
495 |
+
# Calcular score ponderado por tipo de estructura
|
496 |
+
structure_bonus = 0
|
497 |
+
|
498 |
+
# Bonus por estructuras complejas
|
499 |
+
if 'csubj' in current_result['relations'] or 'ccomp' in current_result['relations']:
|
500 |
+
structure_bonus += 0.3
|
501 |
+
|
502 |
+
# Bonus por coordinaci贸n balanceada
|
503 |
+
if 'conj' in current_result['relations'] and 'cc' in current_result['relations']:
|
504 |
+
structure_bonus += 0.2
|
505 |
+
|
506 |
+
# Bonus por modificaci贸n rica
|
507 |
+
if len(set(['amod', 'advmod', 'nmod']) & set(current_result['relations'])) >= 2:
|
508 |
+
structure_bonus += 0.2
|
509 |
+
|
510 |
+
current_result['final_score'] = (
|
511 |
+
current_result['complexity_score'] * (1 + structure_bonus)
|
512 |
+
)
|
513 |
+
|
514 |
+
return current_result
|
515 |
+
|
516 |
+
def normalize_score(value, metric_type,
|
517 |
+
min_threshold=0.0, target_threshold=1.0,
|
518 |
+
range_factor=2.0, optimal_length=None,
|
519 |
+
optimal_connections=None, optimal_depth=None):
|
520 |
+
"""
|
521 |
+
Normaliza un valor considerando umbrales espec铆ficos por tipo de m茅trica.
|
522 |
+
|
523 |
+
Args:
|
524 |
+
value: Valor a normalizar
|
525 |
+
metric_type: Tipo de m茅trica ('vocabulary', 'structure', 'cohesion', 'clarity')
|
526 |
+
min_threshold: Valor m铆nimo aceptable
|
527 |
+
target_threshold: Valor objetivo
|
528 |
+
range_factor: Factor para ajustar el rango
|
529 |
+
optimal_length: Longitud 贸ptima (opcional)
|
530 |
+
optimal_connections: N煤mero 贸ptimo de conexiones (opcional)
|
531 |
+
optimal_depth: Profundidad 贸ptima de estructura (opcional)
|
532 |
+
|
533 |
+
Returns:
|
534 |
+
float: Valor normalizado entre 0 y 1
|
535 |
+
"""
|
536 |
+
try:
|
537 |
+
# Definir umbrales por tipo de m茅trica
|
538 |
+
METRIC_THRESHOLDS = {
|
539 |
+
'vocabulary': {
|
540 |
+
'min': 0.60,
|
541 |
+
'target': 0.75,
|
542 |
+
'range_factor': 1.5
|
543 |
+
},
|
544 |
+
'structure': {
|
545 |
+
'min': 0.65,
|
546 |
+
'target': 0.80,
|
547 |
+
'range_factor': 1.8
|
548 |
+
},
|
549 |
+
'cohesion': {
|
550 |
+
'min': 0.55,
|
551 |
+
'target': 0.70,
|
552 |
+
'range_factor': 1.6
|
553 |
+
},
|
554 |
+
'clarity': {
|
555 |
+
'min': 0.60,
|
556 |
+
'target': 0.75,
|
557 |
+
'range_factor': 1.7
|
558 |
+
}
|
559 |
+
}
|
560 |
+
|
561 |
+
# Validar valores negativos o cero
|
562 |
+
if value < 0:
|
563 |
+
logger.warning(f"Valor negativo recibido: {value}")
|
564 |
+
return 0.0
|
565 |
+
|
566 |
+
# Manejar caso donde el valor es cero
|
567 |
+
if value == 0:
|
568 |
+
logger.warning("Valor cero recibido")
|
569 |
+
return 0.0
|
570 |
+
|
571 |
+
# Obtener umbrales espec铆ficos para el tipo de m茅trica
|
572 |
+
thresholds = METRIC_THRESHOLDS.get(metric_type, {
|
573 |
+
'min': min_threshold,
|
574 |
+
'target': target_threshold,
|
575 |
+
'range_factor': range_factor
|
576 |
+
})
|
577 |
+
|
578 |
+
# Identificar el valor de referencia a usar
|
579 |
+
if optimal_depth is not None:
|
580 |
+
reference = optimal_depth
|
581 |
+
elif optimal_connections is not None:
|
582 |
+
reference = optimal_connections
|
583 |
+
elif optimal_length is not None:
|
584 |
+
reference = optimal_length
|
585 |
+
else:
|
586 |
+
reference = thresholds['target']
|
587 |
+
|
588 |
+
# Validar valor de referencia
|
589 |
+
if reference <= 0:
|
590 |
+
logger.warning(f"Valor de referencia inv谩lido: {reference}")
|
591 |
+
return 0.0
|
592 |
+
|
593 |
+
# Calcular score basado en umbrales
|
594 |
+
if value < thresholds['min']:
|
595 |
+
# Valor por debajo del m铆nimo
|
596 |
+
score = (value / thresholds['min']) * 0.5 # M谩ximo 0.5 para valores bajo el m铆nimo
|
597 |
+
elif value < thresholds['target']:
|
598 |
+
# Valor entre m铆nimo y objetivo
|
599 |
+
range_size = thresholds['target'] - thresholds['min']
|
600 |
+
progress = (value - thresholds['min']) / range_size
|
601 |
+
score = 0.5 + (progress * 0.5) # Escala entre 0.5 y 1.0
|
602 |
+
else:
|
603 |
+
# Valor alcanza o supera el objetivo
|
604 |
+
score = 1.0
|
605 |
+
|
606 |
+
# Penalizar valores muy por encima del objetivo
|
607 |
+
if value > (thresholds['target'] * thresholds['range_factor']):
|
608 |
+
excess = (value - thresholds['target']) / (thresholds['target'] * thresholds['range_factor'])
|
609 |
+
score = max(0.7, 1.0 - excess) # No bajar de 0.7 para valores altos
|
610 |
+
|
611 |
+
# Asegurar que el resultado est茅 entre 0 y 1
|
612 |
+
return max(0.0, min(1.0, score))
|
613 |
+
|
614 |
+
except Exception as e:
|
615 |
+
logger.error(f"Error en normalize_score: {str(e)}")
|
616 |
+
return 0.0
|
617 |
+
|
618 |
+
|
619 |
+
# Funciones de generaci贸n de gr谩ficos
|
620 |
+
def generate_sentence_graphs(doc):
|
621 |
+
"""Genera visualizaciones de estructura de oraciones"""
|
622 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
623 |
+
# Implementar visualizaci贸n
|
624 |
+
plt.close()
|
625 |
+
return fig
|
626 |
+
|
627 |
+
def generate_word_connections(doc):
|
628 |
+
"""Genera red de conexiones de palabras"""
|
629 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
630 |
+
# Implementar visualizaci贸n
|
631 |
+
plt.close()
|
632 |
+
return fig
|
633 |
+
|
634 |
+
def generate_connection_paths(doc):
|
635 |
+
"""Genera patrones de conexi贸n"""
|
636 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
637 |
+
# Implementar visualizaci贸n
|
638 |
+
plt.close()
|
639 |
+
return fig
|
640 |
+
|
641 |
+
def create_vocabulary_network(doc):
|
642 |
+
"""
|
643 |
+
Genera el grafo de red de vocabulario.
|
644 |
+
"""
|
645 |
+
G = nx.Graph()
|
646 |
+
|
647 |
+
# Crear nodos para palabras significativas
|
648 |
+
words = [token.text.lower() for token in doc if token.is_alpha and not token.is_stop]
|
649 |
+
word_freq = Counter(words)
|
650 |
+
|
651 |
+
# A帽adir nodos con tama帽o basado en frecuencia
|
652 |
+
for word, freq in word_freq.items():
|
653 |
+
G.add_node(word, size=freq)
|
654 |
+
|
655 |
+
# Crear conexiones basadas en co-ocurrencia
|
656 |
+
window_size = 5
|
657 |
+
for i in range(len(words) - window_size):
|
658 |
+
window = words[i:i+window_size]
|
659 |
+
for w1, w2 in combinations(set(window), 2):
|
660 |
+
if G.has_edge(w1, w2):
|
661 |
+
G[w1][w2]['weight'] += 1
|
662 |
+
else:
|
663 |
+
G.add_edge(w1, w2, weight=1)
|
664 |
+
|
665 |
+
# Crear visualizaci贸n
|
666 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
667 |
+
pos = nx.spring_layout(G)
|
668 |
+
|
669 |
+
# Dibujar nodos
|
670 |
+
nx.draw_networkx_nodes(G, pos,
|
671 |
+
node_size=[G.nodes[node]['size']*100 for node in G.nodes],
|
672 |
+
node_color='lightblue',
|
673 |
+
alpha=0.7)
|
674 |
+
|
675 |
+
# Dibujar conexiones
|
676 |
+
nx.draw_networkx_edges(G, pos,
|
677 |
+
width=[G[u][v]['weight']*0.5 for u,v in G.edges],
|
678 |
+
alpha=0.5)
|
679 |
+
|
680 |
+
# A帽adir etiquetas
|
681 |
+
nx.draw_networkx_labels(G, pos)
|
682 |
+
|
683 |
+
plt.title("Red de Vocabulario")
|
684 |
+
plt.axis('off')
|
685 |
+
return fig
|
686 |
+
|
687 |
+
def create_syntax_complexity_graph(doc):
|
688 |
+
"""
|
689 |
+
Genera el diagrama de arco de complejidad sint谩ctica.
|
690 |
+
Muestra la estructura de dependencias con colores basados en la complejidad.
|
691 |
+
"""
|
692 |
+
try:
|
693 |
+
# Preparar datos para la visualizaci贸n
|
694 |
+
sentences = list(doc.sents)
|
695 |
+
if not sentences:
|
696 |
+
return None
|
697 |
+
|
698 |
+
# Crear figura para el gr谩fico
|
699 |
+
fig, ax = plt.subplots(figsize=(12, len(sentences) * 2))
|
700 |
+
|
701 |
+
# Colores para diferentes niveles de profundidad
|
702 |
+
depth_colors = plt.cm.viridis(np.linspace(0, 1, 6))
|
703 |
+
|
704 |
+
y_offset = 0
|
705 |
+
max_x = 0
|
706 |
+
|
707 |
+
for sent in sentences:
|
708 |
+
words = [token.text for token in sent]
|
709 |
+
x_positions = range(len(words))
|
710 |
+
max_x = max(max_x, len(words))
|
711 |
+
|
712 |
+
# Dibujar palabras
|
713 |
+
plt.plot(x_positions, [y_offset] * len(words), 'k-', alpha=0.2)
|
714 |
+
plt.scatter(x_positions, [y_offset] * len(words), alpha=0)
|
715 |
+
|
716 |
+
# A帽adir texto
|
717 |
+
for i, word in enumerate(words):
|
718 |
+
plt.annotate(word, (i, y_offset), xytext=(0, -10),
|
719 |
+
textcoords='offset points', ha='center')
|
720 |
+
|
721 |
+
# Dibujar arcos de dependencia
|
722 |
+
for token in sent:
|
723 |
+
if token.dep_ != "ROOT":
|
724 |
+
# Calcular profundidad de dependencia
|
725 |
+
depth = 0
|
726 |
+
current = token
|
727 |
+
while current.head != current:
|
728 |
+
depth += 1
|
729 |
+
current = current.head
|
730 |
+
|
731 |
+
# Determinar posiciones para el arco
|
732 |
+
start = token.i - sent[0].i
|
733 |
+
end = token.head.i - sent[0].i
|
734 |
+
|
735 |
+
# Altura del arco basada en la distancia entre palabras
|
736 |
+
height = 0.5 * abs(end - start)
|
737 |
+
|
738 |
+
# Color basado en la profundidad
|
739 |
+
color = depth_colors[min(depth, len(depth_colors)-1)]
|
740 |
+
|
741 |
+
# Crear arco
|
742 |
+
arc = patches.Arc((min(start, end) + abs(end - start)/2, y_offset),
|
743 |
+
width=abs(end - start),
|
744 |
+
height=height,
|
745 |
+
angle=0,
|
746 |
+
theta1=0,
|
747 |
+
theta2=180,
|
748 |
+
color=color,
|
749 |
+
alpha=0.6)
|
750 |
+
ax.add_patch(arc)
|
751 |
+
|
752 |
+
y_offset -= 2
|
753 |
+
|
754 |
+
# Configurar el gr谩fico
|
755 |
+
plt.xlim(-1, max_x)
|
756 |
+
plt.ylim(y_offset - 1, 1)
|
757 |
+
plt.axis('off')
|
758 |
+
plt.title("Complejidad Sint谩ctica")
|
759 |
+
|
760 |
+
return fig
|
761 |
+
|
762 |
+
except Exception as e:
|
763 |
+
logger.error(f"Error en create_syntax_complexity_graph: {str(e)}")
|
764 |
+
return None
|
765 |
+
|
766 |
+
|
767 |
+
def create_cohesion_heatmap(doc):
|
768 |
+
"""Genera un mapa de calor que muestra la cohesi贸n entre p谩rrafos/oraciones."""
|
769 |
+
try:
|
770 |
+
sentences = list(doc.sents)
|
771 |
+
n_sentences = len(sentences)
|
772 |
+
|
773 |
+
if n_sentences < 2:
|
774 |
+
return None
|
775 |
+
|
776 |
+
similarity_matrix = np.zeros((n_sentences, n_sentences))
|
777 |
+
|
778 |
+
for i in range(n_sentences):
|
779 |
+
for j in range(n_sentences):
|
780 |
+
sent1_lemmas = {token.lemma_ for token in sentences[i]
|
781 |
+
if token.is_alpha and not token.is_stop}
|
782 |
+
sent2_lemmas = {token.lemma_ for token in sentences[j]
|
783 |
+
if token.is_alpha and not token.is_stop}
|
784 |
+
|
785 |
+
if sent1_lemmas and sent2_lemmas:
|
786 |
+
intersection = len(sent1_lemmas & sent2_lemmas) # Corregido aqu铆
|
787 |
+
union = len(sent1_lemmas | sent2_lemmas) # Y aqu铆
|
788 |
+
similarity_matrix[i, j] = intersection / union if union > 0 else 0
|
789 |
+
|
790 |
+
# Crear visualizaci贸n
|
791 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
792 |
+
|
793 |
+
sns.heatmap(similarity_matrix,
|
794 |
+
cmap='YlOrRd',
|
795 |
+
square=True,
|
796 |
+
xticklabels=False,
|
797 |
+
yticklabels=False,
|
798 |
+
cbar_kws={'label': 'Cohesi贸n'},
|
799 |
+
ax=ax)
|
800 |
+
|
801 |
+
plt.title("Mapa de Cohesi贸n Textual")
|
802 |
+
plt.xlabel("Oraciones")
|
803 |
+
plt.ylabel("Oraciones")
|
804 |
+
|
805 |
+
plt.tight_layout()
|
806 |
+
return fig
|
807 |
+
|
808 |
+
except Exception as e:
|
809 |
+
logger.error(f"Error en create_cohesion_heatmap: {str(e)}")
|
810 |
+
return None
|