CHAINLIT-RAG / app.py
AI-RESEARCHER-2024's picture
Update app.py
fa23d20 verified
raw
history blame
3.96 kB
import os
from typing import Any, List, Mapping, Optional
import chainlit as cl
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_community.vectorstores import Chroma
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from llama_cpp import Llama
class LlamaCppLLM(LLM):
"""Custom LangChain wrapper for llama.cpp"""
model: Any
def __init__(self, model: Llama):
super().__init__()
self.model = model
@property
def _llm_type(self) -> str:
return "llama.cpp"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
response = self.model.create_chat_completion(
messages=[{"role": "user", "content": prompt}],
**kwargs
)
return response["choices"][0]["message"]["content"]
# Initialize the embedding model
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
# Load the existing Chroma vector store
persist_directory = os.path.join(os.path.dirname(__file__), 'mydb')
vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
# Initialize Llama model
llama_model = Llama.from_pretrained(
repo_id="bartowski/Meta-Llama-3.1-8B-Instruct-GGUF",
filename="Meta-Llama-3.1-8B-Instruct-IQ2_M.gguf",
n_ctx=2048, # Context window
n_threads=4, # Number of CPU threads to use
n_gpu_layers=0 # Set to higher number if using GPU
)
# Create LangChain wrapper
llm = LlamaCppLLM(model=llama_model)
# Create the RAG prompt template
template = """You are a helpful AI assistant. Using only the following context, answer the user's question.
If you cannot find the answer in the context, say "I don't have enough information to answer this question."
Context:
{context}
Question: {question}
Answer: Let me help you with that."""
prompt = ChatPromptTemplate.from_template(template)
@cl.on_chat_start
async def start():
# Send initial message
await cl.Message(
content="Hi! I'm ready to answer your questions based on the stored documents. What would you like to know?"
).send()
@cl.on_message
async def main(message: cl.Message):
# Create a loading message
msg = cl.Message(content="")
await msg.send()
# Start typing effect
async with cl.Step(name="Searching documents..."):
try:
# Search the vector store
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
# Create the RAG chain
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
# Execute the chain
response = await cl.make_async(rag_chain)(message.content)
# Update loading message with response
await msg.update(content=response)
# Show source documents
docs = retriever.get_relevant_documents(message.content)
elements = []
for i, doc in enumerate(docs):
source_name = f"Source {i+1}"
elements.append(
cl.Text(name=source_name, content=doc.page_content, display="inline")
)
if elements:
await msg.update(elements=elements)
except Exception as e:
await msg.update(content=f"An error occurred: {str(e)}")
if __name__ == "__main__":
cl.run()