Spaces:
Runtime error
Runtime error
AI-RESEARCHER-2024
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,74 @@
|
|
1 |
import os
|
|
|
2 |
import chainlit as cl
|
3 |
-
from langchain_community.
|
4 |
from langchain.prompts import ChatPromptTemplate
|
5 |
from langchain_core.output_parsers import StrOutputParser
|
6 |
from langchain_core.runnables import RunnablePassthrough
|
7 |
from langchain_community.vectorstores import Chroma
|
8 |
-
from
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Load the existing Chroma vector store
|
13 |
-
persist_directory = 'mydb'
|
14 |
vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
15 |
|
16 |
-
# Initialize
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
20 |
)
|
21 |
|
|
|
|
|
|
|
22 |
# Create the RAG prompt template
|
23 |
-
template = """
|
|
|
24 |
|
|
|
25 |
{context}
|
26 |
|
27 |
Question: {question}
|
28 |
|
29 |
-
Answer
|
30 |
-
|
31 |
-
Make sure to:
|
32 |
-
1. Only use information from the provided context
|
33 |
-
2. Be concise and direct
|
34 |
-
3. If you're unsure, acknowledge it
|
35 |
-
"""
|
36 |
|
37 |
prompt = ChatPromptTemplate.from_template(template)
|
38 |
|
|
|
1 |
import os
|
2 |
+
from typing import Any, List, Mapping, Optional
|
3 |
import chainlit as cl
|
4 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
from langchain.prompts import ChatPromptTemplate
|
6 |
from langchain_core.output_parsers import StrOutputParser
|
7 |
from langchain_core.runnables import RunnablePassthrough
|
8 |
from langchain_community.vectorstores import Chroma
|
9 |
+
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
10 |
+
from langchain.llms.base import LLM
|
11 |
+
from llama_cpp import Llama
|
12 |
+
|
13 |
+
class LlamaCppLLM(LLM):
|
14 |
+
"""Custom LangChain wrapper for llama.cpp"""
|
15 |
+
|
16 |
+
model: Any
|
17 |
+
|
18 |
+
def __init__(self, model: Llama):
|
19 |
+
super().__init__()
|
20 |
+
self.model = model
|
21 |
+
|
22 |
+
@property
|
23 |
+
def _llm_type(self) -> str:
|
24 |
+
return "llama.cpp"
|
25 |
+
|
26 |
+
def _call(
|
27 |
+
self,
|
28 |
+
prompt: str,
|
29 |
+
stop: Optional[List[str]] = None,
|
30 |
+
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
31 |
+
**kwargs: Any,
|
32 |
+
) -> str:
|
33 |
+
response = self.model.create_chat_completion(
|
34 |
+
messages=[{"role": "user", "content": prompt}],
|
35 |
+
**kwargs
|
36 |
+
)
|
37 |
+
return response["choices"][0]["message"]["content"]
|
38 |
+
|
39 |
+
# Initialize the embedding model
|
40 |
+
embeddings = HuggingFaceEmbeddings(
|
41 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
42 |
+
model_kwargs={'device': 'cpu'},
|
43 |
+
encode_kwargs={'normalize_embeddings': True}
|
44 |
+
)
|
45 |
|
46 |
# Load the existing Chroma vector store
|
47 |
+
persist_directory = os.path.join(os.path.dirname(__file__), 'mydb')
|
48 |
vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
49 |
|
50 |
+
# Initialize Llama model
|
51 |
+
llama_model = Llama.from_pretrained(
|
52 |
+
repo_id="bartowski/Meta-Llama-3.1-8B-Instruct-GGUF",
|
53 |
+
filename="Meta-Llama-3.1-8B-Instruct-IQ2_M.gguf",
|
54 |
+
n_ctx=2048, # Context window
|
55 |
+
n_threads=4, # Number of CPU threads to use
|
56 |
+
n_gpu_layers=0 # Set to higher number if using GPU
|
57 |
)
|
58 |
|
59 |
+
# Create LangChain wrapper
|
60 |
+
llm = LlamaCppLLM(model=llama_model)
|
61 |
+
|
62 |
# Create the RAG prompt template
|
63 |
+
template = """You are a helpful AI assistant. Using only the following context, answer the user's question.
|
64 |
+
If you cannot find the answer in the context, say "I don't have enough information to answer this question."
|
65 |
|
66 |
+
Context:
|
67 |
{context}
|
68 |
|
69 |
Question: {question}
|
70 |
|
71 |
+
Answer: Let me help you with that."""
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
prompt = ChatPromptTemplate.from_template(template)
|
74 |
|