File size: 3,955 Bytes
d8472fa
fa23d20
d638db5
fa23d20
d8472fa
 
 
 
fa23d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dff132
fa23d20
 
 
 
 
 
1dff132
d8472fa
fa23d20
d8472fa
1dff132
fa23d20
 
 
 
 
 
 
d8472fa
1dff132
fa23d20
 
 
d8472fa
fa23d20
 
d638db5
fa23d20
d8472fa
1dff132
d8472fa
d638db5
fa23d20
d638db5
d8472fa
 
 
 
 
 
 
 
d638db5
 
d8472fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
from typing import Any, List, Mapping, Optional
import chainlit as cl
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_community.vectorstores import Chroma
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from llama_cpp import Llama

class LlamaCppLLM(LLM):
    """Custom LangChain wrapper for llama.cpp"""
    
    model: Any
    
    def __init__(self, model: Llama):
        super().__init__()
        self.model = model
    
    @property
    def _llm_type(self) -> str:
        return "llama.cpp"
    
    def _call(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> str:
        response = self.model.create_chat_completion(
            messages=[{"role": "user", "content": prompt}],
            **kwargs
        )
        return response["choices"][0]["message"]["content"]

# Initialize the embedding model
embeddings = HuggingFaceEmbeddings(
    model_name="sentence-transformers/all-MiniLM-L6-v2",
    model_kwargs={'device': 'cpu'},
    encode_kwargs={'normalize_embeddings': True}
)

# Load the existing Chroma vector store
persist_directory = os.path.join(os.path.dirname(__file__), 'mydb')
vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embeddings)

# Initialize Llama model
llama_model = Llama.from_pretrained(
    repo_id="bartowski/Meta-Llama-3.1-8B-Instruct-GGUF",
    filename="Meta-Llama-3.1-8B-Instruct-IQ2_M.gguf",
    n_ctx=2048,  # Context window
    n_threads=4,  # Number of CPU threads to use
    n_gpu_layers=0  # Set to higher number if using GPU
)

# Create LangChain wrapper
llm = LlamaCppLLM(model=llama_model)

# Create the RAG prompt template
template = """You are a helpful AI assistant. Using only the following context, answer the user's question.
If you cannot find the answer in the context, say "I don't have enough information to answer this question."

Context:
{context}

Question: {question}

Answer: Let me help you with that."""

prompt = ChatPromptTemplate.from_template(template)

@cl.on_chat_start
async def start():
    # Send initial message
    await cl.Message(
        content="Hi! I'm ready to answer your questions based on the stored documents. What would you like to know?"
    ).send()

@cl.on_message
async def main(message: cl.Message):
    # Create a loading message
    msg = cl.Message(content="")
    await msg.send()

    # Start typing effect
    async with cl.Step(name="Searching documents..."):
        try:
            # Search the vector store
            retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
            
            # Create the RAG chain
            rag_chain = (
                {"context": retriever, "question": RunnablePassthrough()}
                | prompt 
                | llm 
                | StrOutputParser()
            )
            
            # Execute the chain
            response = await cl.make_async(rag_chain)(message.content)

            # Update loading message with response
            await msg.update(content=response)

            # Show source documents
            docs = retriever.get_relevant_documents(message.content)
            elements = []
            for i, doc in enumerate(docs):
                source_name = f"Source {i+1}"
                elements.append(
                    cl.Text(name=source_name, content=doc.page_content, display="inline")
                )
            
            if elements:
                await msg.update(elements=elements)

        except Exception as e:
            await msg.update(content=f"An error occurred: {str(e)}")

if __name__ == "__main__":
    cl.run()