File size: 12,633 Bytes
e4c7007
 
 
 
 
 
 
 
 
 
c63323f
e4c7007
f0fcd1a
 
 
e4c7007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d05b33
e4c7007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1de30b3
 
 
e4c7007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37704d4
e4c7007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0fcd1a
1b552d9
9bbdf8c
f0fcd1a
4520520
f0fcd1a
 
 
 
 
 
 
 
 
 
 
 
 
 
e4c7007
 
 
 
 
 
 
 
4222cb3
e4c7007
 
 
 
 
 
 
 
 
 
539cc78
 
e4c7007
 
 
539cc78
 
 
 
 
 
 
 
 
 
e4c7007
 
 
 
 
 
 
539cc78
e4c7007
 
 
 
 
 
 
 
 
 
 
 
 
539cc78
e4c7007
 
539cc78
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import os
import gradio as gr
import tensorflow as tf
from tensorflow.keras.preprocessing import image as image_processor
import numpy as np
from tensorflow.keras.applications.vgg16 import preprocess_input
from tensorflow.keras.models import load_model
from PIL import Image, ImageDraw, ImageFont
from ultralytics import YOLO
import cv2

class Config:
    ASSETS_DIR = './assets'
    MODELS_DIR = './models'
    FONT_DIR = './assets/arial.ttf'
    MODELS = {
        "Calculus and Caries Classification": "classification.h5",
        "Caries Detection": "detection.pt",
        "Dental X-Ray Segmentation": "dental_xray_seg.h5"
    }
    EXAMPLES = {
        "Calculus and Caries Classification": os.path.join(ASSETS_DIR, 'classification'),
        "Caries Detection": os.path.join(ASSETS_DIR, 'detection'),
        "Dental X-Ray Segmentation": os.path.join(ASSETS_DIR, 'segmentation')
    }

class ModelManager:
    @staticmethod
    def load_model(model_name: str):
        model_path = os.path.join(Config.MODELS_DIR, Config.MODELS[model_name])
        if model_name == "Dental X-Ray Segmentation":
            return load_model(model_path)
        elif model_name == "Caries Detection":
            return YOLO(model_path)
        else:
            return load_model(model_path)

class ImageProcessor:

    def process_image(self, image: Image.Image, model_name: str):
        if model_name == "Calculus and Caries Classification":
            return self.classify_image(image, model_name)
        elif model_name == "Caries Detection":
            return self.detect_caries(image)
        elif model_name == "Dental X-Ray Segmentation":
            return self.segment_dental_xray(image)

    def classify_image(self, image: Image.Image, model_name: str):
        model = ModelManager.load_model(model_name)
        img = image.resize((224, 224))
        x = image_processor.img_to_array(img)
        x = np.expand_dims(x, axis=0)
        img_data = preprocess_input(x)
        result = model.predict(img_data)
        if result[0][0] > result[0][1]:
            prediction = 'Calculus'
        else:
            prediction = 'Caries'
        
        # Draw the classification result on the image
        draw = ImageDraw.Draw(image)
        font = ImageFont.truetype(Config.FONT_DIR, 20)
        text = f"Classified as: {prediction}"
        text_width, text_height = draw.textsize(text, font=font)
        draw.rectangle([(0, 0), (text_width, text_height)], fill="black")
        draw.text((0, 0), text, fill="white", font=font)
        
        return image

    def detect_caries(self, image: Image.Image):
        model = ModelManager.load_model("Caries Detection")
        results = model.predict(image)
        result = results[0]
        draw = ImageDraw.Draw(image)
        font = ImageFont.truetype(Config.FONT_DIR, 20)

        for box in result.boxes:
            x1, y1, x2, y2 = [round(x) for x in box.xyxy[0].tolist()]
            class_id = box.cls[0].item()
            # check if the class is tooth
            if result.names[class_id].lower() == "tooth":
                continue
            prob = round(box.conf[0].item(), 2)
            label = f"{result.names[class_id]}: {prob}"
            draw.rectangle([x1, y1, x2, y2], outline="red", width=2)
            text_width, text_height = draw.textsize(label, font=font)
            draw.rectangle([(x1, y1 - text_height), (x1 + text_width, y1)], fill="red")
            draw.text((x1, y1 - text_height), label, fill="white", font=font)

        return image

    def segment_dental_xray(self, image: Image.Image):
        model = ModelManager.load_model("Dental X-Ray Segmentation")
        img = np.asarray(image)
        img_cv = self.convert_one_channel(img)
        img_cv = cv2.resize(img_cv, (512, 512), interpolation=cv2.INTER_LANCZOS4)
        img_cv = np.float32(img_cv / 255)
        img_cv = np.reshape(img_cv, (1, 512, 512, 1))
        prediction = model.predict(img_cv)
        predicted = prediction[0]
        predicted = cv2.resize(predicted, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
        mask = np.uint8(predicted * 255)
        _, mask = cv2.threshold(mask, thresh=0, maxval=255, type=cv2.THRESH_BINARY + cv2.THRESH_OTSU)
        kernel = np.ones((5, 5), dtype=np.float32)
        mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1)
        mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=1)
        cnts, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
        
        # Make a writable copy of the image
        img_writable = self.convert_rgb(img).copy()
        output = cv2.drawContours(img_writable, cnts, -1, (255, 0, 0), 2)
        return Image.fromarray(output)

    def convert_one_channel(self, img):
        if len(img.shape) > 2:
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        return img

    def convert_rgb(self, img):
        if len(img.shape) == 2:
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
        return img

class GradioInterface:
    def __init__(self):
        self.image_processor = ImageProcessor()
        self.preloaded_examples = self.preload_examples()

    def preload_examples(self):
        preloaded = {}
        for model_name, example_dir in Config.EXAMPLES.items():
            examples = [os.path.join(example_dir, img) for img in os.listdir(example_dir)]
            preloaded[model_name] = examples
        return preloaded

    def create_interface(self):
        app_styles = """
        <style>
            /* Global Styles */
            body, #root {
                font-family: Helvetica, Arial, sans-serif;
                background-color: #1a1a1a;
                color: #fafafa;
            }
            /* Header Styles */
            .app-header {
                background: linear-gradient(45deg, #1a1a1a 0%, #333333 100%);
                padding: 24px;
                border-radius: 8px;
                margin-bottom: 24px;
                text-align: center;
            }
            .app-title {
                font-size: 48px;
                margin: 0;
                color: #fafafa;
            }
            .app-subtitle {
                font-size: 24px;
                margin: 8px 0 16px;
                color: #fafafa;
            }
            .app-description {
                font-size: 16px;
                line-height: 1.6;
                opacity: 0.8;
                margin-bottom: 24px;
            }
            /* Button Styles */
            .publication-links {
                display: flex;
                justify-content: center;
                flex-wrap: wrap;
                gap: 8px;
                margin-bottom: 16px;
            }
            .publication-link {
                display: inline-flex;
                align-items: center;
                padding: 8px 16px;
                background-color: #333;
                color: #fff !important;
                text-decoration: none !important;
                border-radius: 20px;
                font-size: 14px;
                transition: background-color 0.3s;
            }
            .publication-link:hover {
                background-color: #555;
            }
            .publication-link i {
                margin-right: 8px;
            }
            /* Content Styles */
            .content-container {
                background-color: #2a2a2a;
                border-radius: 8px;
                padding: 24px;
                margin-bottom: 24px;
            }
            /* Image Styles */
            .image-preview img {
                max-width: 512px;
                max-height: 512px;  
                margin: 0 auto;
                border-radius: 4px;
                display: block;
                object-fit: contain;  
            }
            /* Control Styles */
            .control-panel {
                background-color: #333;
                padding: 16px;
                border-radius: 8px;
                margin-top: 16px;
            }
            /* Gradio Component Overrides */
            .gr-button {
                background-color: #4a4a4a;
                color: #fff;
                border: none;
                border-radius: 4px;
                padding: 8px 16px;
                cursor: pointer;
                transition: background-color 0.3s;
            }
            .gr-button:hover {
                background-color: #5a5a5a;
            }
            .gr-input, .gr-dropdown {
                background-color: #3a3a3a;
                color: #fff;
                border: 1px solid #4a4a4a;
                border-radius: 4px;
                padding: 8px;
            }
            .gr-form {
                background-color: transparent;
            }
            .gr-panel {
                border: none;
                background-color: transparent;
            }
            /* Override any conflicting styles from Bulma */
            .button.is-normal.is-rounded.is-dark {
                color: #fff !important;
                text-decoration: none !important;
            }
        </style>
        """

        header_html = f"""
        <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/css/bulma.min.css">
        <link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.4/css/all.css">
        {app_styles}
        <div class="app-header">
            <h1 class="app-title">AI in Dentistry</h1>
            <h2 class="app-subtitle">Steven Fernandes, Ph.D.</h2>
            <p class="app-description">
                This application demonstrates the use of AI in dentistry for calculus and caries classification, caries detection, and dental x-ray segmentation.
            </p>
        </div>
        """

        js_func = """
        function refresh() {
            const url = new URL(window.location);
            if (url.searchParams.get('__theme') !== 'dark') {
                url.searchParams.set('__theme', 'dark');
                window.location.href = url.href;
            }
        }
        """

        def process_image(image, model_name):
            result = self.image_processor.process_image(image, model_name)
            return result

        def update_examples(model_name):
            examples = self.preloaded_examples[model_name]
            return gr.Dataset(samples=[[example] for example in examples])

        with gr.Blocks(js=js_func, theme=gr.themes.Default()) as demo:
            gr.HTML(header_html)
            with gr.Row(elem_classes="content-container"):
                with gr.Column():
                    input_image = gr.Image(label="Input Image", type="pil", format="png", elem_classes="image-preview")
                    with gr.Row(elem_classes="control-panel"):
                        model_name = gr.Dropdown(
                            label="Model",
                            choices=list(Config.MODELS.keys()),
                            value="Calculus and Caries Classification",
                        )
                    examples_classification = gr.Examples(
                        label="Classification Examples",
                        inputs=input_image,
                        examples=self.preloaded_examples["Calculus and Caries Classification"],
                    )
                    examples_detection = gr.Examples(
                        label="Caries Detection Examples",
                        inputs=input_image,
                        examples=self.preloaded_examples["Caries Detection"],
                    )
                    examples_segmentation = gr.Examples(
                        label="Segmentation Examples",
                        inputs=input_image,
                        examples=self.preloaded_examples["Dental X-Ray Segmentation"],
                    )
                with gr.Column():
                    result = gr.Image(label="Result", elem_classes="image-preview")
                    run_button = gr.Button("Run", elem_classes="gr-button")

            model_name.change(
                fn=update_examples,
                inputs=model_name,
                outputs=[examples_classification.dataset, examples_detection.dataset, examples_segmentation.dataset],
            )

            run_button.click(
                fn=process_image,
                inputs=[input_image, model_name],
                outputs=result,
            )

        return demo

def main():
    interface = GradioInterface()
    demo = interface.create_interface()
    demo.launch(debug=True)

if __name__ == "__main__":
    main()