Spaces:
Sleeping
Sleeping
AI-RESEARCHER-2024
commited on
Commit
•
539cc78
1
Parent(s):
04c696b
Update app.py
Browse files
app.py
CHANGED
@@ -31,16 +31,14 @@ class ModelManager:
|
|
31 |
model_path = os.path.join(Config.MODELS_DIR, Config.MODELS[model_name])
|
32 |
if model_name == "Dental X-Ray Segmentation":
|
33 |
try:
|
34 |
-
|
35 |
except:
|
36 |
-
|
37 |
-
return model
|
38 |
elif model_name == "Caries Detection":
|
39 |
return YOLO(model_path)
|
40 |
else:
|
41 |
return load_model(model_path)
|
42 |
|
43 |
-
|
44 |
class ImageProcessor:
|
45 |
|
46 |
def process_image(self, image: Image.Image, model_name: str):
|
@@ -124,7 +122,6 @@ class ImageProcessor:
|
|
124 |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
125 |
return img
|
126 |
|
127 |
-
|
128 |
class GradioInterface:
|
129 |
def __init__(self):
|
130 |
self.image_processor = ImageProcessor()
|
@@ -266,16 +263,6 @@ class GradioInterface:
|
|
266 |
</div>
|
267 |
"""
|
268 |
|
269 |
-
header_html = f"""
|
270 |
-
<div class="app-header">
|
271 |
-
<h1 class="app-title">AI in Dentistry</h1>
|
272 |
-
<h2 class="app-subtitle"> Advancing Imaging and Clinical Transcription</h2>
|
273 |
-
<p class="app-description">
|
274 |
-
This application demonstrates the use of AI in dentistry for tasks such as classification, detection, and segmentation.
|
275 |
-
</p>
|
276 |
-
</div>
|
277 |
-
"""
|
278 |
-
|
279 |
js_func = """
|
280 |
function refresh() {
|
281 |
const url = new URL(window.location);
|
@@ -305,10 +292,21 @@ class GradioInterface:
|
|
305 |
choices=list(Config.MODELS.keys()),
|
306 |
value="Calculus and Caries Classification",
|
307 |
)
|
308 |
-
|
|
|
309 |
inputs=input_image,
|
310 |
examples=self.preloaded_examples["Calculus and Caries Classification"],
|
311 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
with gr.Column():
|
313 |
result = gr.Image(label="Result", elem_classes="image-preview")
|
314 |
run_button = gr.Button("Run", elem_classes="gr-button")
|
@@ -316,7 +314,7 @@ class GradioInterface:
|
|
316 |
model_name.change(
|
317 |
fn=update_examples,
|
318 |
inputs=model_name,
|
319 |
-
outputs=
|
320 |
)
|
321 |
|
322 |
run_button.click(
|
@@ -330,8 +328,7 @@ class GradioInterface:
|
|
330 |
def main():
|
331 |
interface = GradioInterface()
|
332 |
demo = interface.create_interface()
|
333 |
-
demo.launch(
|
334 |
|
335 |
if __name__ == "__main__":
|
336 |
-
main()
|
337 |
-
|
|
|
31 |
model_path = os.path.join(Config.MODELS_DIR, Config.MODELS[model_name])
|
32 |
if model_name == "Dental X-Ray Segmentation":
|
33 |
try:
|
34 |
+
return from_pretrained_keras("SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net")
|
35 |
except:
|
36 |
+
return tf.keras.models.load_model(model_path)
|
|
|
37 |
elif model_name == "Caries Detection":
|
38 |
return YOLO(model_path)
|
39 |
else:
|
40 |
return load_model(model_path)
|
41 |
|
|
|
42 |
class ImageProcessor:
|
43 |
|
44 |
def process_image(self, image: Image.Image, model_name: str):
|
|
|
122 |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
|
123 |
return img
|
124 |
|
|
|
125 |
class GradioInterface:
|
126 |
def __init__(self):
|
127 |
self.image_processor = ImageProcessor()
|
|
|
263 |
</div>
|
264 |
"""
|
265 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
js_func = """
|
267 |
function refresh() {
|
268 |
const url = new URL(window.location);
|
|
|
292 |
choices=list(Config.MODELS.keys()),
|
293 |
value="Calculus and Caries Classification",
|
294 |
)
|
295 |
+
examples_classification = gr.Examples(
|
296 |
+
label="Classification Examples",
|
297 |
inputs=input_image,
|
298 |
examples=self.preloaded_examples["Calculus and Caries Classification"],
|
299 |
)
|
300 |
+
examples_detection = gr.Examples(
|
301 |
+
label="Caries Detection Examples",
|
302 |
+
inputs=input_image,
|
303 |
+
examples=self.preloaded_examples["Caries Detection"],
|
304 |
+
)
|
305 |
+
examples_segmentation = gr.Examples(
|
306 |
+
label="Segmentation Examples",
|
307 |
+
inputs=input_image,
|
308 |
+
examples=self.preloaded_examples["Dental X-Ray Segmentation"],
|
309 |
+
)
|
310 |
with gr.Column():
|
311 |
result = gr.Image(label="Result", elem_classes="image-preview")
|
312 |
run_button = gr.Button("Run", elem_classes="gr-button")
|
|
|
314 |
model_name.change(
|
315 |
fn=update_examples,
|
316 |
inputs=model_name,
|
317 |
+
outputs=[examples_classification.dataset, examples_detection.dataset, examples_segmentation.dataset],
|
318 |
)
|
319 |
|
320 |
run_button.click(
|
|
|
328 |
def main():
|
329 |
interface = GradioInterface()
|
330 |
demo = interface.create_interface()
|
331 |
+
demo.launch(debug=True)
|
332 |
|
333 |
if __name__ == "__main__":
|
334 |
+
main()
|
|