Spaces:
Sleeping
Sleeping
File size: 12,700 Bytes
e4c7007 c63323f e4c7007 f0fcd1a e4c7007 04c696b 539cc78 04c696b 539cc78 e4c7007 f0fcd1a e4c7007 4222cb3 e4c7007 539cc78 e4c7007 539cc78 e4c7007 539cc78 e4c7007 539cc78 e4c7007 539cc78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import os
import gradio as gr
import tensorflow as tf
from tensorflow.keras.preprocessing import image as image_processor
import numpy as np
from tensorflow.keras.applications.vgg16 import preprocess_input
from tensorflow.keras.models import load_model
from PIL import Image, ImageDraw, ImageFont
from ultralytics import YOLO
import cv2
from huggingface_hub import from_pretrained_keras
class Config:
ASSETS_DIR = './assets'
MODELS_DIR = './models'
FONT_DIR = './assets/arial.ttf'
MODELS = {
"Calculus and Caries Classification": "classification.h5",
"Caries Detection": "detection.pt",
"Dental X-Ray Segmentation": "dental_xray_seg.h5"
}
EXAMPLES = {
"Calculus and Caries Classification": os.path.join(ASSETS_DIR, 'classification'),
"Caries Detection": os.path.join(ASSETS_DIR, 'detection'),
"Dental X-Ray Segmentation": os.path.join(ASSETS_DIR, 'segmentation')
}
class ModelManager:
@staticmethod
def load_model(model_name: str):
model_path = os.path.join(Config.MODELS_DIR, Config.MODELS[model_name])
if model_name == "Dental X-Ray Segmentation":
try:
return from_pretrained_keras("SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net")
except:
return tf.keras.models.load_model(model_path)
elif model_name == "Caries Detection":
return YOLO(model_path)
else:
return load_model(model_path)
class ImageProcessor:
def process_image(self, image: Image.Image, model_name: str):
if model_name == "Calculus and Caries Classification":
return self.classify_image(image, model_name)
elif model_name == "Caries Detection":
return self.detect_caries(image)
elif model_name == "Dental X-Ray Segmentation":
return self.segment_dental_xray(image)
def classify_image(self, image: Image.Image, model_name: str):
model = ModelManager.load_model(model_name)
img = image.resize((224, 224))
x = image_processor.img_to_array(img)
x = np.expand_dims(x, axis=0)
img_data = preprocess_input(x)
result = model.predict(img_data)
if result[0][0] > result[0][1]:
prediction = 'Calculus'
else:
prediction = 'Caries'
# Draw the classification result on the image
draw = ImageDraw.Draw(image)
font = ImageFont.truetype(Config.FONT_DIR, 20)
text = f"Classified as: {prediction}"
text_width, text_height = draw.textsize(text, font=font)
draw.rectangle([(0, 0), (text_width, text_height)], fill="black")
draw.text((0, 0), text, fill="white", font=font)
return image
def detect_caries(self, image: Image.Image):
model = ModelManager.load_model("Caries Detection")
results = model.predict(image)
result = results[0]
draw = ImageDraw.Draw(image)
font = ImageFont.truetype(Config.FONT_DIR, 20)
for box in result.boxes:
x1, y1, x2, y2 = [round(x) for x in box.xyxy[0].tolist()]
class_id = box.cls[0].item()
prob = round(box.conf[0].item(), 2)
label = f"{result.names[class_id]}: {prob}"
draw.rectangle([x1, y1, x2, y2], outline="red", width=2)
text_width, text_height = draw.textsize(label, font=font)
draw.rectangle([(x1, y1 - text_height), (x1 + text_width, y1)], fill="red")
draw.text((x1, y1 - text_height), label, fill="white", font=font)
return image
def segment_dental_xray(self, image: Image.Image):
model = ModelManager.load_model("Dental X-Ray Segmentation")
img = np.asarray(image)
img_cv = self.convert_one_channel(img)
img_cv = cv2.resize(img_cv, (512, 512), interpolation=cv2.INTER_LANCZOS4)
img_cv = np.float32(img_cv / 255)
img_cv = np.reshape(img_cv, (1, 512, 512, 1))
prediction = model.predict(img_cv)
predicted = prediction[0]
predicted = cv2.resize(predicted, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
mask = np.uint8(predicted * 255)
_, mask = cv2.threshold(mask, thresh=0, maxval=255, type=cv2.THRESH_BINARY + cv2.THRESH_OTSU)
kernel = np.ones((5, 5), dtype=np.float32)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=1)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=1)
cnts, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Make a writable copy of the image
img_writable = self.convert_rgb(img).copy()
output = cv2.drawContours(img_writable, cnts, -1, (255, 0, 0), 3)
return Image.fromarray(output)
def convert_one_channel(self, img):
if len(img.shape) > 2:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
return img
def convert_rgb(self, img):
if len(img.shape) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
return img
class GradioInterface:
def __init__(self):
self.image_processor = ImageProcessor()
self.preloaded_examples = self.preload_examples()
def preload_examples(self):
preloaded = {}
for model_name, example_dir in Config.EXAMPLES.items():
examples = [os.path.join(example_dir, img) for img in os.listdir(example_dir)]
preloaded[model_name] = examples
return preloaded
def create_interface(self):
app_styles = """
<style>
/* Global Styles */
body, #root {
font-family: Helvetica, Arial, sans-serif;
background-color: #1a1a1a;
color: #fafafa;
}
/* Header Styles */
.app-header {
background: linear-gradient(45deg, #1a1a1a 0%, #333333 100%);
padding: 24px;
border-radius: 8px;
margin-bottom: 24px;
text-align: center;
}
.app-title {
font-size: 48px;
margin: 0;
color: #fafafa;
}
.app-subtitle {
font-size: 24px;
margin: 8px 0 16px;
color: #fafafa;
}
.app-description {
font-size: 16px;
line-height: 1.6;
opacity: 0.8;
margin-bottom: 24px;
}
/* Button Styles */
.publication-links {
display: flex;
justify-content: center;
flex-wrap: wrap;
gap: 8px;
margin-bottom: 16px;
}
.publication-link {
display: inline-flex;
align-items: center;
padding: 8px 16px;
background-color: #333;
color: #fff !important;
text-decoration: none !important;
border-radius: 20px;
font-size: 14px;
transition: background-color 0.3s;
}
.publication-link:hover {
background-color: #555;
}
.publication-link i {
margin-right: 8px;
}
/* Content Styles */
.content-container {
background-color: #2a2a2a;
border-radius: 8px;
padding: 24px;
margin-bottom: 24px;
}
/* Image Styles */
.image-preview img {
max-width: 512px;
max-height: 512px;
margin: 0 auto;
border-radius: 4px;
display: block;
object-fit: contain;
}
/* Control Styles */
.control-panel {
background-color: #333;
padding: 16px;
border-radius: 8px;
margin-top: 16px;
}
/* Gradio Component Overrides */
.gr-button {
background-color: #4a4a4a;
color: #fff;
border: none;
border-radius: 4px;
padding: 8px 16px;
cursor: pointer;
transition: background-color 0.3s;
}
.gr-button:hover {
background-color: #5a5a5a;
}
.gr-input, .gr-dropdown {
background-color: #3a3a3a;
color: #fff;
border: 1px solid #4a4a4a;
border-radius: 4px;
padding: 8px;
}
.gr-form {
background-color: transparent;
}
.gr-panel {
border: none;
background-color: transparent;
}
/* Override any conflicting styles from Bulma */
.button.is-normal.is-rounded.is-dark {
color: #fff !important;
text-decoration: none !important;
}
</style>
"""
header_html = f"""
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/css/bulma.min.css">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.15.4/css/all.css">
{app_styles}
<div class="app-header">
<h1 class="app-title">AI Dentistry Application</h1>
<h2 class="app-subtitle">Model Selection and Image Processing</h2>
<p class="app-description">
This application allows you to select different models for dental image processing tasks.
</p>
</div>
"""
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
def process_image(image, model_name):
result = self.image_processor.process_image(image, model_name)
return result
def update_examples(model_name):
examples = self.preloaded_examples[model_name]
return gr.Dataset(samples=[[example] for example in examples])
with gr.Blocks(js=js_func, theme=gr.themes.Default()) as demo:
gr.HTML(header_html)
with gr.Row(elem_classes="content-container"):
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil", format="png", elem_classes="image-preview")
with gr.Row(elem_classes="control-panel"):
model_name = gr.Dropdown(
label="Model",
choices=list(Config.MODELS.keys()),
value="Calculus and Caries Classification",
)
examples_classification = gr.Examples(
label="Classification Examples",
inputs=input_image,
examples=self.preloaded_examples["Calculus and Caries Classification"],
)
examples_detection = gr.Examples(
label="Caries Detection Examples",
inputs=input_image,
examples=self.preloaded_examples["Caries Detection"],
)
examples_segmentation = gr.Examples(
label="Segmentation Examples",
inputs=input_image,
examples=self.preloaded_examples["Dental X-Ray Segmentation"],
)
with gr.Column():
result = gr.Image(label="Result", elem_classes="image-preview")
run_button = gr.Button("Run", elem_classes="gr-button")
model_name.change(
fn=update_examples,
inputs=model_name,
outputs=[examples_classification.dataset, examples_detection.dataset, examples_segmentation.dataset],
)
run_button.click(
fn=process_image,
inputs=[input_image, model_name],
outputs=result,
)
return demo
def main():
interface = GradioInterface()
demo = interface.create_interface()
demo.launch(debug=True)
if __name__ == "__main__":
main() |