Andresmfs's picture
Update README.md
e8f2adf verified
|
raw
history blame
13.8 kB
---
license: cc-by-nc-sa-4.0
datasets:
- somosnlp/es-inclusive-language
language:
- es
metrics:
- bleurt
- sacrebleu
pipeline_tag: text2text-generation
tags:
- social
---
# Model Card for Traductor Inclusivo
This model is a fine-tuned version of [projecte-aina/aguila-7b](https://huggingface.co./projecte-aina/aguila-7b) on the dataset [somosnlp/es-inclusive-language](https://huggingface.co./datasets/somosnlp/es-inclusive-language).
Languages are powerful tools to communicate ideas, but their use is not impartial. The selection of words carries inherent biases and reflects subjective perspectives. In some cases, language is wielded to enforce ideologies, marginalize certain groups, or promote specific political agendas.
Spanish is not the exception to that. For instance, when we say “los alumnos” or “los ingenieros”, we are excluding women from those groups. Similarly, expressions such as “los gitanos” o “los musulmanes” perpetuate discrimination against these communities.
In response to these linguistic challenges, this model offers a way to construct inclusive alternatives in accordance with official guidelines on inclusive language from various Spanish speaking countries. Its purpose is to provide grammatically correct and inclusive solutions to situations where our language choices might otherwise be exclusive.
By rectifying biases ingrained in language and fostering inclusivity, it combats discrimination, amplifies the visibility of marginalized groups, and contributes to the cultivation of a more inclusive and respectful society.
This is a tool that contributes to the Sustainable Development Goals number five (_Achieve gender equality and empower all women and girls_) and ten (_Reduce inequality within and among countries_).
The model works in such a way that, given an input text, it returns the original text rewritten using inclusive language.
It achieves the following results on the validation set:
- Loss: 0.6030
## Model Details
### Model Description
- **Developed by:** Andrés Martínez Fernández-Salguero, Imanuel Rozenberg, Gaia Quintana Fleitas, Miguel López Pérez and Josué Sauca
- **Funded by:** SomosNLP, HuggingFace
- **Model type:** Language model, instruction tuned
- **Language(s):** Spanish (`es-ES`, `es-AR`, `es-MX`, `es-CR`, `es-CL`)
- **License:** cc-by-nc-sa-4.0
- **Fine-tuned from model:** [projecte-aina/aguila-7b](https://huggingface.co./projecte-aina/aguila-7b)
- **Dataset used:** [somosnlp/es-inclusive-language](https://huggingface.co./datasets/somosnlp/es-inclusive-language)
### Model Sources
- **Repository:** https://github.com/Andresmfs/Traductor_inclusivo
- **Demo:** https://huggingface.co./spaces/somosnlp/es-inclusive-language-demo
- **Video presentation:** https://www.youtube.com/watch?v=7rrNGJIXEHU
## Uses
### Direct Use
The general uses of this model are adaptations of texts in Spanish to inclusive language.
It can be used mainly to adapt news, blogposts, emails and official documents among others.
### Out-of-Scope Use
This model is specifically designed for translating Spanish texts to Spanish texts in inclusive language.
Using the model for unrelated tasks is considered out of scope.
This model can not be used with commercial purposes, it is intended for research or educational purposes only.
## Bias, Risks, and Limitations
- Model has not been trained on long-complex texts.
- Model has been trained mostly with sentences where the terms to be modified are at the beginning of the sentence.
- Model returns only one translation option when several might also be adequate.
- Possible small information omission on translation.
- Possible forced use of the term "personas".
- Model does not detect or modify hate speech.
- Model has been trained on data mainly based on Spanish Inclusive Language Guidelines and may inherit any bias comming from the guidelines and institutions behind them. They are official and updated guidelines that should not contain strong biases.
- Model may not work propperly on translation difficulties aside the list of difficulties present on [es-inclusive-language dataset](https://huggingface.co./datasets/somosnlp/es-inclusive-language)
- Other biases coming from the train dataset [es-inclusive-language dataset](https://huggingface.co./datasets/somosnlp/es-inclusive-language) should be taken into account.
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
## How to Get Started with the Model
Use the code below to get started with the model in 16-bits.
```python
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
import torch
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('somosnlp/', trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained('somosnlp/', trust_remote_code=True,
quantization_config=bnb_config,
device_map="auto")
# generation_config
generation_config = model.generation_config
generation_config.max_new_tokens = 100
generation_config.temperature = 0.7
generation_config.top_p = 0.7
generation_config.num_return_sequences = 1
generation_config.pad_token_id = tokenizer.eos_token_id
generation_config.eos_token_id = tokenizer.eos_token_id
# Define inference function
def translate_es_inclusivo(exclusive_text):
# generate input prompt
eval_prompt = f"""Reescribe el siguiente texto utilizando lenguaje inclusivo.\n
Texto: {exclusive_text}\n
Texto en lenguaje inclusivo:"""
# tokenize input
model_input = tokenizer(eval_prompt, return_tensors="pt").to(model.device)
# set max_new_tokens if necessary
if len(model_input['input_ids'][0]) > 80:
model.generation_config.max_new_tokens = len(model_input['input_ids'][0]) + 0.2 * len(model_input['input_ids'][0])
# get length of encoded prompt
prompt_token_len = len(model_input['input_ids'][0])
# generate and decode
with torch.no_grad():
inclusive_text = tokenizer.decode(model.generate(**model_input, generation_config=generation_config)[0][prompt_token_len:],
skip_special_tokens=True)
return inclusive_text
##########
input_text = 'Los alumnos atienden a sus profesores'
print(translate_es_inclusivo(input_text))
```
As it is a heavy model, you may want to use it in 4-bits:
``` python
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
from transformers import BitsAndBytesConfig
import torch
## Load model in 4bits
# bnb_configuration
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=False)
# model
model = AutoModelForCausalLM.from_pretrained('somosnlp/', trust_remote_code=True,
quantization_config=bnb_config,
device_map="auto")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained('somosnlp/', trust_remote_code=True)
# generation_config
generation_config = model.generation_config
generation_config.max_new_tokens = 100
generation_config.temperature = 0.7
generation_config.top_p = 0.7
generation_config.num_return_sequences = 1
generation_config.pad_token_id = tokenizer.eos_token_id
generation_config.eos_token_id = tokenizer.eos_token_id
# Define inference function
def translate_es_inclusivo(exclusive_text):
# generate input prompt
eval_prompt = f"""Reescribe el siguiente texto utilizando lenguaje inclusivo.\n
Texto: {exclusive_text}\n
Texto en lenguaje inclusivo:"""
# tokenize input
model_input = tokenizer(eval_prompt, return_tensors="pt").to(model.device)
# set max_new_tokens if necessary
if len(model_input['input_ids'][0]) > 80:
model.generation_config.max_new_tokens = len(model_input['input_ids'][0]) + 0.2 * len(model_input['input_ids'][0])
# get length of encoded prompt
prompt_token_len = len(model_input['input_ids'][0])
# generate and decode
with torch.no_grad():
inclusive_text = tokenizer.decode(model.generate(**model_input, generation_config=generation_config)[0][prompt_token_len:],
skip_special_tokens=True)
return inclusive_text
##########
input_text = 'Los alumnos atienden a sus profesores'
print(translate_es_inclusivo(input_text))
```
## Training Details
### Training Data
Train, validation and test data splits can be found in [somosnlp/es-inclusive-language](https://huggingface.co./datasets/somosnlp/es-inclusive-language)
### Training Procedure
For training we used QLoRA technique in 4-bits and rank 8
Find the training script [here](https://github.com/Andresmfs/Traductor_inclusivo/tree/master)
#### Training Hyperparameters
The following hyperparameters were used during training:
- **learning_rate:** 0.0001
- **train_batch_size:** 8
- **eval_batch_size:** 8
- **seed:** 42
- **optimizer:** Adam with betas=(0.9,0.999) and epsilon=1e-08
- **lr_scheduler_type:** linear
- **num_epochs:** 10
- **Training regime:** fp16 mixed precision
#### Speeds, Sizes, Times
The model was trained in 10 epochs with a total duration of 2hours and 54 minutes.
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 402 | 0.8020 |
| 1.0274 | 2.0 | 804 | 0.7019 |
| 0.6745 | 3.0 | 1206 | 0.6515 |
| 0.5826 | 4.0 | 1608 | 0.6236 |
| 0.5104 | 5.0 | 2010 | 0.6161 |
| 0.5104 | 6.0 | 2412 | 0.6149 |
| 0.4579 | 7.0 | 2814 | 0.6030 |
| 0.4255 | 8.0 | 3216 | 0.6151 |
| 0.3898 | 9.0 | 3618 | 0.6209 |
| 0.3771 | 10.0 | 4020 | 0.6292 |
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
Here you can find the [validation set](https://huggingface.co./datasets/somosnlp/es-inclusive-language/viewer/default/validation) used during training.
Here you can find the [test set](https://huggingface.co./datasets/somosnlp/es-inclusive-language/viewer/default/test) used for evaluating model errors.
#### Metrics
For test evaluation it has been used a weighted harmonic mean of metrics [bleurt](https://huggingface.co./spaces/evaluate-metric/bleurt) (60%) and [Sacrebleu](https://huggingface.co./spaces/evaluate-metric/sacrebleu) (40%).
In _Sacrebleu_ metric grammatical correctness carries high weight compared to the actual words used, whereas in _Bleurt_ metric the actual words used have higher weight over grammatical correctness.
Combining both metrics, we account for a grammatically correct prediction together with the use of the required specific words.
### Results
On [this notebook](https://github.com/Andresmfs/Traductor_inclusivo/blob/master/Error%20analysis.ipynb) you can find the results of the test evaluation.
We get an average score of 68.4 (measured with the above described metric).
Due to the existence of equivalent language formulas (these are inclusive language formulas that can be used indistinctly and the choice of a formula over the other is rather a stylistic decision than a language correctness decision) it is possible to argue that the real score of the model is higher.
## Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** Nvidia T4 medium (8 vCPU, 30 Gb RAM, 16 Gb VRAM)
- **Hours used:** 3 hours
- **Cloud Provider:** Google Cloud Platform
- **Compute Region:** europe-west
- **Carbon Emitted:** 0.13 kg CO2 eq.
## Technical Specifications
### Model Architecture and Objective
The base model is [projecte-aina/aguila-7b](https://huggingface.co./projecte-aina/aguila-7b) finetuned in 4-bit.
### Compute Infrastructure
#### Hardware
Hardware used was Nvidia T4 medium (8 vCPU, 30 Gb RAM, 16 Gb VRAM) funded by Hugging Face
#### Software
- Transformers 4.30.0
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.13.3
- Peft
## License
Creative Commons (cc-by-nc-sa-4.0)
This kind of license is inherited from dataset used for training.
## Citation
**BibTeX:**
```
@software{AIGMJ2024TraductorInclusivo,
author = {Andrés Martínez Fernández-Salguero, Imanuel Rozenberg, Gaia Quintana Fleitas, Miguel López Pérez, Josué Sauca},
title = {TraductorInclusivo},
month = April,
year = 2024,
url = {https://huggingface.co./somosnlp/es-inclusivo-translator}
}
```
- AIGMJ2024TraductorInclusivo
- author: Andrés Martínez Fernández-Salguero, Imanuel Rozenberg, Gaia Quintana Fleitas, Miguel López Pérez, Josué Sauca
- title: Traductor Inclusivo
- year: 2024
- url: https://huggingface.co./somosnlp/es-inclusivo-translator
## More Information
This project was developed during the [Hackathon #Somos600M](https://somosnlp.org/hackathon) organized by SomosNLP. The model was trained using GPUs sponsored by HuggingFace.
**Team:**
- [**Andrés Martínez Fernández-Salguero**](https://huggingface.co./Andresmfs)
- **Imanuel Rozenberg**
- [**Gaia Quintana Fleitas**](https://huggingface.co./gaiaquintana)
- [**Miguel López Pérez**](https://huggingface.co./Wizmik12)
- **Josué Sauca**
## Contact
- [**Andrés Martínez Fernández-Salguero**](www.linkedin.com/in/andrés-martínez-fernández-salguero-725674214) ([email protected])
- [**Gaia Quintana Fleitas**](https://www.linkedin.com/in/gaiaquintana/) ([email protected])
- [**Miguel López Pérez**](https://www.linkedin.com/in/miguel-lopez-perezz/)