|
--- |
|
license: apache-2.0 |
|
base_model: HooshvareLab/bert-fa-base-uncased-clf-digimag |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
model-index: |
|
- name: uncased-clf-digimag_v1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# uncased-clf-digimag_v1 |
|
|
|
This model is a fine-tuned version of [HooshvareLab/bert-fa-base-uncased-clf-digimag](https://huggingface.co./HooshvareLab/bert-fa-base-uncased-clf-digimag) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2679 |
|
- Accuracy: 0.6413 |
|
- F1: 0.6418 |
|
- Precision: 0.6458 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:| |
|
| No log | 1.0 | 221 | 1.1415 | 0.4972 | 0.4716 | 0.5696 | |
|
| No log | 2.0 | 442 | 0.9770 | 0.6016 | 0.6029 | 0.6063 | |
|
| 1.0648 | 3.0 | 663 | 0.9529 | 0.6266 | 0.6271 | 0.6304 | |
|
| 1.0648 | 4.0 | 884 | 0.9879 | 0.6470 | 0.6468 | 0.6636 | |
|
| 0.6031 | 5.0 | 1105 | 1.0113 | 0.6311 | 0.6321 | 0.6345 | |
|
| 0.6031 | 6.0 | 1326 | 1.0840 | 0.6356 | 0.6322 | 0.6363 | |
|
| 0.329 | 7.0 | 1547 | 1.1273 | 0.6436 | 0.6438 | 0.6487 | |
|
| 0.329 | 8.0 | 1768 | 1.2089 | 0.6300 | 0.6285 | 0.6291 | |
|
| 0.329 | 9.0 | 1989 | 1.2486 | 0.6345 | 0.6352 | 0.6399 | |
|
| 0.1809 | 10.0 | 2210 | 1.2679 | 0.6413 | 0.6418 | 0.6458 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|