See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 85cab9708b5ce674_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/85cab9708b5ce674_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56m2/be949620-b930-4622-87e9-017b8f4fac77
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 72GB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/85cab9708b5ce674_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
seed: 34411492
sequence_len: 1024
shuffle: true
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: true
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: null
wandb_project: god
wandb_run: m4m3
wandb_runid: null
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
be949620-b930-4622-87e9-017b8f4fac77
This model is a fine-tuned version of HuggingFaceM4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.3518
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 34411492
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0006 | 1 | 10.3767 |
10.3767 | 0.0054 | 9 | 10.3759 |
10.3737 | 0.0108 | 18 | 10.3735 |
10.371 | 0.0162 | 27 | 10.3694 |
10.3648 | 0.0217 | 36 | 10.3628 |
10.3582 | 0.0271 | 45 | 10.3569 |
10.3541 | 0.0325 | 54 | 10.3539 |
10.3542 | 0.0379 | 63 | 10.3527 |
10.3534 | 0.0433 | 72 | 10.3521 |
10.3523 | 0.0487 | 81 | 10.3519 |
10.3509 | 0.0542 | 90 | 10.3518 |
10.3528 | 0.0596 | 99 | 10.3518 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for sn56m2/be949620-b930-4622-87e9-017b8f4fac77
Base model
HuggingFaceM4/tiny-random-LlamaForCausalLM