metadata
language:
- ar
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- Voice_Cleverlytics
model-index:
- name: Whisper_Cleverlytics
results: []
metrics:
- wer
Whisper_Cleverlytics
Usage
To run the model, first install the Transformers library through the GitHub repo.
pip install --upgrade pip
pip install --upgrade git+https://github.com/huggingface/transformers.git accelerate datasets[audio]
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
#from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "smerchi/Arabic-Morocco-Speech_To_Text"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=False, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=True,
torch_dtype=torch_dtype,
device=device,
)
audio="/content/audio.mp3"
%time result = pipe(audio)
print(result["text"],)
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- num_epochs: 20
Training results
Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.16.0
- Tokenizers 0.14.1