smartgmin's picture
Upload TFViTForImageClassification
eede340 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_keras_callback
model-index:
  - name: Entrnal_eyes_data_4class_resize_224_model
    results: []

Entrnal_eyes_data_4class_resize_224_model

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0823
  • Train Accuracy: 0.9261
  • Train Top-3-accuracy: 0.9972
  • Validation Loss: 0.2588
  • Validation Accuracy: 0.9299
  • Validation Top-3-accuracy: 0.9974
  • Epoch: 6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 651, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train Top-3-accuracy Validation Loss Validation Accuracy Validation Top-3-accuracy Epoch
0.7993 0.6130 0.9518 0.5184 0.7611 0.9833 0
0.3482 0.8052 0.9881 0.3126 0.8382 0.9913 1
0.2260 0.8597 0.9929 0.2990 0.8739 0.9942 2
0.1576 0.8861 0.9949 0.2597 0.8954 0.9956 3
0.1191 0.9041 0.9960 0.2642 0.9106 0.9964 4
0.0933 0.9167 0.9967 0.2598 0.9216 0.9970 5
0.0823 0.9261 0.9972 0.2588 0.9299 0.9974 6

Framework versions

  • Transformers 4.44.2
  • TensorFlow 2.15.1
  • Datasets 3.0.0
  • Tokenizers 0.19.1