SentenceTransformer based on FacebookAI/xlm-roberta-base
This is a sentence-transformers model finetuned from FacebookAI/xlm-roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: FacebookAI/xlm-roberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("slimaneMakh/triplet_CloseHlabel_farLabel_andnegativ-1M-5eps-XLMR_29may")
# Run inference
sentences = [
'Sales',
'Revenue',
'Operating profit',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9988 |
dot_accuracy | 0.0015 |
manhattan_accuracy | 0.9975 |
euclidean_accuracy | 0.9991 |
max_accuracy | 0.9991 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 660,643 training samples
- Columns:
anchor_label
,pos_hlabel
, andneg_hlabel
- Approximate statistics based on the first 1000 samples:
anchor_label pos_hlabel neg_hlabel type string string string details - min: 3 tokens
- mean: 11.86 tokens
- max: 39 tokens
- min: 3 tokens
- mean: 9.06 tokens
- max: 32 tokens
- min: 3 tokens
- mean: 7.99 tokens
- max: 25 tokens
- Samples:
anchor_label pos_hlabel neg_hlabel Basic earnings (loss) per share
Tavakasum kahjum aktsia kohta
II Kapital z nadwyzki wartosci emisyjnej ponad wartosc nominalna
Comprehensive income
Suma dochodow calkowitych
dont Marques
Cash and cash equivalents
Cash and cash equivalents
Cars incl prepayments
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Evaluation Dataset
Unnamed Dataset
- Size: 283,133 evaluation samples
- Columns:
anchor_label
,pos_hlabel
, andneg_hlabel
- Approximate statistics based on the first 1000 samples:
anchor_label pos_hlabel neg_hlabel type string string string details - min: 3 tokens
- mean: 11.78 tokens
- max: 37 tokens
- min: 3 tokens
- mean: 9.22 tokens
- max: 39 tokens
- min: 3 tokens
- mean: 8.12 tokens
- max: 29 tokens
- Samples:
anchor_label pos_hlabel neg_hlabel Deferred tax assets
Deferred tax assets
Immateriella tillgangar
Equity
EGET KAPITAL inklusive periodens resultat
Materials
Adjustments for decrease (increase) in other operating receivables
Okning av ovriga rorelsetillgangar
Rorelseresultat
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1warmup_ratio
: 0.1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falsefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | max_accuracy |
---|---|---|---|---|
0.0121 | 500 | 3.7705 | - | - |
0.0242 | 1000 | 1.4084 | - | - |
0.0363 | 1500 | 0.7062 | - | - |
0.0484 | 2000 | 0.5236 | - | - |
0.0605 | 2500 | 0.4348 | - | - |
0.0727 | 3000 | 0.3657 | - | - |
0.0848 | 3500 | 0.3657 | - | - |
0.0969 | 4000 | 0.2952 | - | - |
0.1090 | 4500 | 0.3805 | - | - |
0.1211 | 5000 | 0.3255 | - | - |
0.1332 | 5500 | 0.2621 | - | - |
0.1453 | 6000 | 0.2377 | - | - |
0.1574 | 6500 | 0.2139 | - | - |
0.1695 | 7000 | 0.2085 | - | - |
0.1816 | 7500 | 0.1809 | - | - |
0.1937 | 8000 | 0.1711 | - | - |
0.2059 | 8500 | 0.1608 | - | - |
0.2180 | 9000 | 0.1808 | - | - |
0.2301 | 9500 | 0.1553 | - | - |
0.2422 | 10000 | 0.1417 | - | - |
0.2543 | 10500 | 0.1329 | - | - |
0.2664 | 11000 | 0.1689 | - | - |
0.2785 | 11500 | 0.1292 | - | - |
0.2906 | 12000 | 0.1181 | - | - |
0.3027 | 12500 | 0.1223 | - | - |
0.3148 | 13000 | 0.129 | - | - |
0.3269 | 13500 | 0.0911 | - | - |
0.3391 | 14000 | 0.113 | - | - |
0.3512 | 14500 | 0.0955 | - | - |
0.3633 | 15000 | 0.108 | - | - |
0.3754 | 15500 | 0.094 | - | - |
0.3875 | 16000 | 0.0947 | - | - |
0.3996 | 16500 | 0.0748 | - | - |
0.4117 | 17000 | 0.0699 | - | - |
0.4238 | 17500 | 0.0707 | - | - |
0.4359 | 18000 | 0.0768 | - | - |
0.4480 | 18500 | 0.0805 | - | - |
0.4601 | 19000 | 0.0705 | - | - |
0.4723 | 19500 | 0.069 | - | - |
0.4844 | 20000 | 0.072 | - | - |
0.4965 | 20500 | 0.0669 | - | - |
0.5086 | 21000 | 0.066 | - | - |
0.5207 | 21500 | 0.0624 | - | - |
0.5328 | 22000 | 0.0687 | - | - |
0.5449 | 22500 | 0.076 | - | - |
0.5570 | 23000 | 0.0563 | - | - |
0.5691 | 23500 | 0.0594 | - | - |
0.5812 | 24000 | 0.0524 | - | - |
0.5933 | 24500 | 0.0528 | - | - |
0.6055 | 25000 | 0.0448 | - | - |
0.6176 | 25500 | 0.041 | - | - |
0.6297 | 26000 | 0.0397 | - | - |
0.6418 | 26500 | 0.0489 | - | - |
0.6539 | 27000 | 0.0595 | - | - |
0.6660 | 27500 | 0.034 | - | - |
0.6781 | 28000 | 0.0569 | - | - |
0.6902 | 28500 | 0.0467 | - | - |
0.7023 | 29000 | 0.0323 | - | - |
0.7144 | 29500 | 0.0428 | - | - |
0.7266 | 30000 | 0.0344 | - | - |
0.7387 | 30500 | 0.029 | - | - |
0.7508 | 31000 | 0.0418 | - | - |
0.7629 | 31500 | 0.0285 | - | - |
0.7750 | 32000 | 0.0425 | - | - |
0.7871 | 32500 | 0.0266 | - | - |
0.7992 | 33000 | 0.0325 | - | - |
0.8113 | 33500 | 0.0215 | - | - |
0.8234 | 34000 | 0.0316 | - | - |
0.8355 | 34500 | 0.0286 | - | - |
0.8476 | 35000 | 0.0285 | - | - |
0.8598 | 35500 | 0.0284 | - | - |
0.8719 | 36000 | 0.0147 | - | - |
0.8840 | 36500 | 0.0217 | - | - |
0.8961 | 37000 | 0.0311 | - | - |
0.9082 | 37500 | 0.0202 | - | - |
0.9203 | 38000 | 0.0236 | - | - |
0.9324 | 38500 | 0.0201 | - | - |
0.9445 | 39000 | 0.0246 | - | - |
0.9566 | 39500 | 0.0177 | - | - |
0.9687 | 40000 | 0.0173 | - | - |
0.9808 | 40500 | 0.0202 | - | - |
0.9930 | 41000 | 0.017 | - | - |
1.0 | 41291 | - | 0.0140 | 0.9991 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.0
- Transformers: 4.39.3
- PyTorch: 2.1.2
- Accelerate: 0.28.0
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for slimaneMakh/triplet_CloseHlabel_farLabel_andnegativ-1M-5eps-XLMR_29may
Base model
FacebookAI/xlm-roberta-baseEvaluation results
- Cosine Accuracy on Unknownself-reported0.999
- Dot Accuracy on Unknownself-reported0.002
- Manhattan Accuracy on Unknownself-reported0.998
- Euclidean Accuracy on Unknownself-reported0.999
- Max Accuracy on Unknownself-reported0.999