See axolotl config
axolotl version: 0.5.2
base_model: mistralai/Mistral-7B-v0.1
model_type: AutoModelForCausalLM
tokenizer_config: Open-Orca/Mistral-7B-OpenOrca
tokenizer_type: AutoTokenizer
tokenizer_use_fast: false
resize_token_embeddings_to_32x: false
flash_attention: true
xformers_attention:
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: chatml
datasets:
- path: skymizer/open-orca-conversations
type: chat_template
field_messages: messages
train_on_split: train
test_datasets:
- path: skymizer/open-orca-conversations
type: chat_template
field_messages: messages
split: test
hf_use_auth_token: true
dataset_prepared_path: /mnt/home/model-team/dataset/pretokenized/mistral-open-orca
output_dir: /mnt/home/model-team/models/mistral-7B-v0.1-open-orca-q-sparse
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
# eval_causal_lm_metrics: ["perplexity"]
wandb_project: "axolotl_q_sparse_sft"
wandb_entity:
wandb_watch:
wandb_name: "mistral-7B-v0.1-open-orca-q-sparse"
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 8
eval_batch_size:
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.000005
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.95
adam_eps: 0.000001
max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
hub_model_id: "skymizer/mistral-7B-v0.1-open-orca-q-sparse"
save_strategy: "steps"
save_steps: 500
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
warmup_ratio: 0.03
eval_steps: 500
eval_table_size:
eval_max_new_tokens: 2048
debug:
deepspeed: /root/train/axolotl/deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
seed: 42
mistral-7B-v0.1-open-orca-q-sparse
topk_sparsity all = 0.5 with relu2
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.8081
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 182
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
11.1181 | 0.0002 | 1 | 11.1302 |
3.3048 | 0.0824 | 500 | 3.2701 |
2.9251 | 0.1648 | 1000 | 2.8377 |
2.6088 | 0.2472 | 1500 | 2.5340 |
2.3853 | 0.3296 | 2000 | 2.3155 |
2.2076 | 0.4120 | 2500 | 2.1627 |
2.0993 | 0.4944 | 3000 | 2.0499 |
2.0122 | 0.5768 | 3500 | 1.9705 |
1.9029 | 0.6592 | 4000 | 1.9069 |
1.8822 | 0.7416 | 4500 | 1.8588 |
1.941 | 0.8240 | 5000 | 1.8296 |
1.9377 | 0.9064 | 5500 | 1.8117 |
1.8411 | 0.9888 | 6000 | 1.8081 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.