nova_v1.5
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the publicis_c3b_ind dataset. It achieves the following results on the evaluation set:
- Loss: 0.0014
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 48
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0436 | 0.1125 | 50 | 0.0401 |
0.0433 | 0.2249 | 100 | 0.0318 |
0.0326 | 0.3374 | 150 | 0.0277 |
0.0297 | 0.4498 | 200 | 0.0248 |
0.0318 | 0.5623 | 250 | 0.0222 |
0.0171 | 0.6747 | 300 | 0.0201 |
0.0313 | 0.7872 | 350 | 0.0188 |
0.0216 | 0.8996 | 400 | 0.0179 |
0.0157 | 1.0124 | 450 | 0.0164 |
0.0222 | 1.1248 | 500 | 0.0157 |
0.028 | 1.2373 | 550 | 0.0152 |
0.0152 | 1.3497 | 600 | 0.0141 |
0.0253 | 1.4622 | 650 | 0.0134 |
0.0196 | 1.5746 | 700 | 0.0131 |
0.0253 | 1.6871 | 750 | 0.0123 |
0.0127 | 1.7996 | 800 | 0.0116 |
0.0095 | 1.9120 | 850 | 0.0110 |
0.0209 | 2.0247 | 900 | 0.0102 |
0.0061 | 2.1372 | 950 | 0.0101 |
0.0111 | 2.2496 | 1000 | 0.0092 |
0.0095 | 2.3621 | 1050 | 0.0082 |
0.0066 | 2.4746 | 1100 | 0.0079 |
0.0117 | 2.5870 | 1150 | 0.0070 |
0.0041 | 2.6995 | 1200 | 0.0073 |
0.0094 | 2.8119 | 1250 | 0.0065 |
0.006 | 2.9244 | 1300 | 0.0061 |
0.0052 | 3.0371 | 1350 | 0.0057 |
0.0049 | 3.1496 | 1400 | 0.0053 |
0.0063 | 3.2620 | 1450 | 0.0039 |
0.0049 | 3.3745 | 1500 | 0.0039 |
0.0065 | 3.4869 | 1550 | 0.0037 |
0.0041 | 3.5994 | 1600 | 0.0034 |
0.0038 | 3.7118 | 1650 | 0.0033 |
0.0036 | 3.8243 | 1700 | 0.0033 |
0.0051 | 3.9367 | 1750 | 0.0031 |
0.0026 | 4.0495 | 1800 | 0.0027 |
0.002 | 4.1619 | 1850 | 0.0026 |
0.0024 | 4.2744 | 1900 | 0.0024 |
0.0023 | 4.3868 | 1950 | 0.0024 |
0.0034 | 4.4993 | 2000 | 0.0021 |
0.0019 | 4.6118 | 2050 | 0.0022 |
0.0017 | 4.7242 | 2100 | 0.0019 |
0.0017 | 4.8367 | 2150 | 0.0019 |
0.0025 | 4.9491 | 2200 | 0.0019 |
0.0018 | 5.0618 | 2250 | 0.0020 |
0.0016 | 5.1743 | 2300 | 0.0019 |
0.0014 | 5.2868 | 2350 | 0.0018 |
0.0014 | 5.3992 | 2400 | 0.0018 |
0.0012 | 5.5117 | 2450 | 0.0017 |
0.0011 | 5.6241 | 2500 | 0.0017 |
0.0008 | 5.7366 | 2550 | 0.0014 |
0.0018 | 5.8490 | 2600 | 0.0014 |
0.0017 | 5.9615 | 2650 | 0.0014 |
0.0009 | 6.0742 | 2700 | 0.0015 |
0.0009 | 6.1867 | 2750 | 0.0014 |
0.0014 | 6.2991 | 2800 | 0.0014 |
0.0012 | 6.4116 | 2850 | 0.0016 |
Framework versions
- PEFT 0.12.0
- Transformers 4.46.1
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.