breeze-dsw-tiny-ml / README.md
hanasim's picture
Model save
0a07bb3 verified
|
raw
history blame
2.35 kB
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - common_voice_16_0
metrics:
  - wer
model-index:
  - name: breeze-dsw-tiny-ml
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_16_0
          type: common_voice_16_0
          config: ml
          split: test
          args: ml
        metrics:
          - name: Wer
            type: wer
            value: 55.097312326227986

breeze-dsw-tiny-ml

This model is a fine-tuned version of openai/whisper-tiny on the common_voice_16_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7383
  • Wer: 55.0973

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.1736 2.02 100 1.1670 99.7776
0.9647 4.04 200 1.0049 95.4866
0.5311 7.02 300 0.6807 74.5598
0.3036 9.04 400 0.5410 61.5755
0.1672 12.02 500 0.5146 56.5709
0.1006 14.04 600 0.5503 54.3744
0.0484 17.02 700 0.5859 54.5042
0.0305 19.04 800 0.6562 55.4124
0.0147 22.02 900 0.7095 54.8749
0.0116 24.04 1000 0.7383 55.0973

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0