simonycl's picture
Upload folder using huggingface_hub
8088680 verified
---
library_name: transformers
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- simonycl/llama3.1-ultrafeedback-annotate-armorm
model-index:
- name: llama-3.1-8b-instruct-armorm
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama-3.1-8b-instruct-armorm
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) on the simonycl/llama3.1-ultrafeedback-annotate-armorm dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5123
- Rewards/chosen: -2.5095
- Rewards/rejected: -3.2703
- Rewards/accuracies: 0.7782
- Rewards/margins: 0.7608
- Logps/rejected: -600.9280
- Logps/chosen: -513.8394
- Logits/rejected: -2.6733
- Logits/chosen: -2.7845
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.2606 | 0.7886 | 400 | 0.5123 | -2.5095 | -3.2703 | 0.7782 | 0.7608 | -600.9280 | -513.8394 | -2.6733 | -2.7845 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1