|
--- |
|
license: apache-2.0 |
|
base_model: albert-base-v2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: best_model-yelp_polarity-32-100 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# best_model-yelp_polarity-32-100 |
|
|
|
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co./albert-base-v2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6759 |
|
- Accuracy: 0.9219 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 150 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 2 | 0.6263 | 0.9219 | |
|
| No log | 2.0 | 4 | 0.6212 | 0.9375 | |
|
| No log | 3.0 | 6 | 0.6183 | 0.9375 | |
|
| No log | 4.0 | 8 | 0.6196 | 0.9375 | |
|
| 0.3722 | 5.0 | 10 | 0.6224 | 0.9375 | |
|
| 0.3722 | 6.0 | 12 | 0.6235 | 0.9219 | |
|
| 0.3722 | 7.0 | 14 | 0.6204 | 0.9375 | |
|
| 0.3722 | 8.0 | 16 | 0.6164 | 0.9375 | |
|
| 0.3722 | 9.0 | 18 | 0.6145 | 0.9375 | |
|
| 0.3647 | 10.0 | 20 | 0.6147 | 0.9375 | |
|
| 0.3647 | 11.0 | 22 | 0.6156 | 0.9375 | |
|
| 0.3647 | 12.0 | 24 | 0.6168 | 0.9375 | |
|
| 0.3647 | 13.0 | 26 | 0.6201 | 0.9219 | |
|
| 0.3647 | 14.0 | 28 | 0.6271 | 0.9219 | |
|
| 0.3406 | 15.0 | 30 | 0.6346 | 0.9219 | |
|
| 0.3406 | 16.0 | 32 | 0.6356 | 0.9219 | |
|
| 0.3406 | 17.0 | 34 | 0.6223 | 0.9219 | |
|
| 0.3406 | 18.0 | 36 | 0.6258 | 0.9219 | |
|
| 0.3406 | 19.0 | 38 | 0.6385 | 0.9219 | |
|
| 0.2674 | 20.0 | 40 | 0.6640 | 0.9219 | |
|
| 0.2674 | 21.0 | 42 | 0.6955 | 0.9219 | |
|
| 0.2674 | 22.0 | 44 | 0.7032 | 0.9219 | |
|
| 0.2674 | 23.0 | 46 | 0.7005 | 0.9219 | |
|
| 0.2674 | 24.0 | 48 | 0.6918 | 0.9219 | |
|
| 0.1287 | 25.0 | 50 | 0.6602 | 0.9219 | |
|
| 0.1287 | 26.0 | 52 | 0.6141 | 0.9219 | |
|
| 0.1287 | 27.0 | 54 | 0.5937 | 0.8906 | |
|
| 0.1287 | 28.0 | 56 | 0.5987 | 0.9062 | |
|
| 0.1287 | 29.0 | 58 | 0.6046 | 0.8906 | |
|
| 0.0668 | 30.0 | 60 | 0.5944 | 0.8906 | |
|
| 0.0668 | 31.0 | 62 | 0.5954 | 0.8906 | |
|
| 0.0668 | 32.0 | 64 | 0.5907 | 0.9062 | |
|
| 0.0668 | 33.0 | 66 | 0.5787 | 0.9062 | |
|
| 0.0668 | 34.0 | 68 | 0.5778 | 0.9062 | |
|
| 0.0463 | 35.0 | 70 | 0.5876 | 0.9062 | |
|
| 0.0463 | 36.0 | 72 | 0.6117 | 0.9219 | |
|
| 0.0463 | 37.0 | 74 | 0.6575 | 0.9219 | |
|
| 0.0463 | 38.0 | 76 | 0.6886 | 0.9219 | |
|
| 0.0463 | 39.0 | 78 | 0.7052 | 0.9219 | |
|
| 0.0233 | 40.0 | 80 | 0.7125 | 0.9219 | |
|
| 0.0233 | 41.0 | 82 | 0.7227 | 0.9219 | |
|
| 0.0233 | 42.0 | 84 | 0.7260 | 0.9219 | |
|
| 0.0233 | 43.0 | 86 | 0.7399 | 0.9219 | |
|
| 0.0233 | 44.0 | 88 | 0.7464 | 0.9219 | |
|
| 0.0012 | 45.0 | 90 | 0.7493 | 0.9219 | |
|
| 0.0012 | 46.0 | 92 | 0.7494 | 0.9219 | |
|
| 0.0012 | 47.0 | 94 | 0.7478 | 0.9219 | |
|
| 0.0012 | 48.0 | 96 | 0.7453 | 0.9219 | |
|
| 0.0012 | 49.0 | 98 | 0.7420 | 0.9219 | |
|
| 0.0001 | 50.0 | 100 | 0.7381 | 0.9219 | |
|
| 0.0001 | 51.0 | 102 | 0.7340 | 0.9219 | |
|
| 0.0001 | 52.0 | 104 | 0.7297 | 0.9219 | |
|
| 0.0001 | 53.0 | 106 | 0.7253 | 0.9219 | |
|
| 0.0001 | 54.0 | 108 | 0.7210 | 0.9219 | |
|
| 0.0 | 55.0 | 110 | 0.7168 | 0.9219 | |
|
| 0.0 | 56.0 | 112 | 0.7128 | 0.9219 | |
|
| 0.0 | 57.0 | 114 | 0.7090 | 0.9219 | |
|
| 0.0 | 58.0 | 116 | 0.7054 | 0.9219 | |
|
| 0.0 | 59.0 | 118 | 0.7020 | 0.9219 | |
|
| 0.0 | 60.0 | 120 | 0.6989 | 0.9219 | |
|
| 0.0 | 61.0 | 122 | 0.6961 | 0.9219 | |
|
| 0.0 | 62.0 | 124 | 0.6934 | 0.9219 | |
|
| 0.0 | 63.0 | 126 | 0.6909 | 0.9219 | |
|
| 0.0 | 64.0 | 128 | 0.6887 | 0.9219 | |
|
| 0.0 | 65.0 | 130 | 0.6865 | 0.9219 | |
|
| 0.0 | 66.0 | 132 | 0.6846 | 0.9219 | |
|
| 0.0 | 67.0 | 134 | 0.6827 | 0.9219 | |
|
| 0.0 | 68.0 | 136 | 0.6811 | 0.9219 | |
|
| 0.0 | 69.0 | 138 | 0.6795 | 0.9219 | |
|
| 0.0 | 70.0 | 140 | 0.6780 | 0.9219 | |
|
| 0.0 | 71.0 | 142 | 0.6766 | 0.9219 | |
|
| 0.0 | 72.0 | 144 | 0.6754 | 0.9219 | |
|
| 0.0 | 73.0 | 146 | 0.6742 | 0.9219 | |
|
| 0.0 | 74.0 | 148 | 0.6731 | 0.9219 | |
|
| 0.0 | 75.0 | 150 | 0.6721 | 0.9219 | |
|
| 0.0 | 76.0 | 152 | 0.6711 | 0.9219 | |
|
| 0.0 | 77.0 | 154 | 0.6702 | 0.9219 | |
|
| 0.0 | 78.0 | 156 | 0.6693 | 0.9219 | |
|
| 0.0 | 79.0 | 158 | 0.6685 | 0.9219 | |
|
| 0.0 | 80.0 | 160 | 0.6677 | 0.9219 | |
|
| 0.0 | 81.0 | 162 | 0.6670 | 0.9219 | |
|
| 0.0 | 82.0 | 164 | 0.6664 | 0.9219 | |
|
| 0.0 | 83.0 | 166 | 0.6658 | 0.9219 | |
|
| 0.0 | 84.0 | 168 | 0.6653 | 0.9219 | |
|
| 0.0 | 85.0 | 170 | 0.6648 | 0.9219 | |
|
| 0.0 | 86.0 | 172 | 0.6644 | 0.9219 | |
|
| 0.0 | 87.0 | 174 | 0.6641 | 0.9062 | |
|
| 0.0 | 88.0 | 176 | 0.6638 | 0.9062 | |
|
| 0.0 | 89.0 | 178 | 0.6635 | 0.9062 | |
|
| 0.0 | 90.0 | 180 | 0.6633 | 0.9062 | |
|
| 0.0 | 91.0 | 182 | 0.6631 | 0.9062 | |
|
| 0.0 | 92.0 | 184 | 0.6629 | 0.9062 | |
|
| 0.0 | 93.0 | 186 | 0.6628 | 0.9062 | |
|
| 0.0 | 94.0 | 188 | 0.6628 | 0.9062 | |
|
| 0.0 | 95.0 | 190 | 0.6627 | 0.9062 | |
|
| 0.0 | 96.0 | 192 | 0.6627 | 0.9062 | |
|
| 0.0 | 97.0 | 194 | 0.6627 | 0.9062 | |
|
| 0.0 | 98.0 | 196 | 0.6627 | 0.9062 | |
|
| 0.0 | 99.0 | 198 | 0.6628 | 0.9062 | |
|
| 0.0 | 100.0 | 200 | 0.6628 | 0.9062 | |
|
| 0.0 | 101.0 | 202 | 0.6629 | 0.9062 | |
|
| 0.0 | 102.0 | 204 | 0.6629 | 0.9062 | |
|
| 0.0 | 103.0 | 206 | 0.6630 | 0.9062 | |
|
| 0.0 | 104.0 | 208 | 0.6632 | 0.9062 | |
|
| 0.0 | 105.0 | 210 | 0.6633 | 0.9062 | |
|
| 0.0 | 106.0 | 212 | 0.6634 | 0.9219 | |
|
| 0.0 | 107.0 | 214 | 0.6636 | 0.9219 | |
|
| 0.0 | 108.0 | 216 | 0.6638 | 0.9219 | |
|
| 0.0 | 109.0 | 218 | 0.6640 | 0.9219 | |
|
| 0.0 | 110.0 | 220 | 0.6642 | 0.9219 | |
|
| 0.0 | 111.0 | 222 | 0.6644 | 0.9219 | |
|
| 0.0 | 112.0 | 224 | 0.6646 | 0.9219 | |
|
| 0.0 | 113.0 | 226 | 0.6648 | 0.9219 | |
|
| 0.0 | 114.0 | 228 | 0.6650 | 0.9219 | |
|
| 0.0 | 115.0 | 230 | 0.6653 | 0.9219 | |
|
| 0.0 | 116.0 | 232 | 0.6656 | 0.9219 | |
|
| 0.0 | 117.0 | 234 | 0.6659 | 0.9219 | |
|
| 0.0 | 118.0 | 236 | 0.6661 | 0.9219 | |
|
| 0.0 | 119.0 | 238 | 0.6664 | 0.9219 | |
|
| 0.0 | 120.0 | 240 | 0.6667 | 0.9219 | |
|
| 0.0 | 121.0 | 242 | 0.6670 | 0.9219 | |
|
| 0.0 | 122.0 | 244 | 0.6672 | 0.9219 | |
|
| 0.0 | 123.0 | 246 | 0.6675 | 0.9219 | |
|
| 0.0 | 124.0 | 248 | 0.6679 | 0.9219 | |
|
| 0.0 | 125.0 | 250 | 0.6681 | 0.9219 | |
|
| 0.0 | 126.0 | 252 | 0.6684 | 0.9219 | |
|
| 0.0 | 127.0 | 254 | 0.6687 | 0.9219 | |
|
| 0.0 | 128.0 | 256 | 0.6691 | 0.9219 | |
|
| 0.0 | 129.0 | 258 | 0.6694 | 0.9219 | |
|
| 0.0 | 130.0 | 260 | 0.6698 | 0.9219 | |
|
| 0.0 | 131.0 | 262 | 0.6702 | 0.9219 | |
|
| 0.0 | 132.0 | 264 | 0.6706 | 0.9219 | |
|
| 0.0 | 133.0 | 266 | 0.6709 | 0.9219 | |
|
| 0.0 | 134.0 | 268 | 0.6712 | 0.9219 | |
|
| 0.0 | 135.0 | 270 | 0.6716 | 0.9219 | |
|
| 0.0 | 136.0 | 272 | 0.6719 | 0.9219 | |
|
| 0.0 | 137.0 | 274 | 0.6722 | 0.9219 | |
|
| 0.0 | 138.0 | 276 | 0.6725 | 0.9219 | |
|
| 0.0 | 139.0 | 278 | 0.6727 | 0.9219 | |
|
| 0.0 | 140.0 | 280 | 0.6730 | 0.9219 | |
|
| 0.0 | 141.0 | 282 | 0.6732 | 0.9219 | |
|
| 0.0 | 142.0 | 284 | 0.6734 | 0.9219 | |
|
| 0.0 | 143.0 | 286 | 0.6737 | 0.9219 | |
|
| 0.0 | 144.0 | 288 | 0.6740 | 0.9219 | |
|
| 0.0 | 145.0 | 290 | 0.6744 | 0.9219 | |
|
| 0.0 | 146.0 | 292 | 0.6747 | 0.9219 | |
|
| 0.0 | 147.0 | 294 | 0.6750 | 0.9219 | |
|
| 0.0 | 148.0 | 296 | 0.6753 | 0.9219 | |
|
| 0.0 | 149.0 | 298 | 0.6757 | 0.9219 | |
|
| 0.0 | 150.0 | 300 | 0.6759 | 0.9219 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.0.dev0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.13.3 |
|
|