metadata
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: best_model-yelp_polarity-32-100
results: []
best_model-yelp_polarity-32-100
This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4649
- Accuracy: 0.9531
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 150
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 2 | 0.4546 | 0.9531 |
No log | 2.0 | 4 | 0.4598 | 0.9531 |
No log | 3.0 | 6 | 0.4661 | 0.9531 |
No log | 4.0 | 8 | 0.4814 | 0.9375 |
0.5203 | 5.0 | 10 | 0.4985 | 0.9375 |
0.5203 | 6.0 | 12 | 0.5179 | 0.9375 |
0.5203 | 7.0 | 14 | 0.5372 | 0.9375 |
0.5203 | 8.0 | 16 | 0.5624 | 0.9375 |
0.5203 | 9.0 | 18 | 0.5780 | 0.9375 |
0.5493 | 10.0 | 20 | 0.6019 | 0.9375 |
0.5493 | 11.0 | 22 | 0.6239 | 0.9375 |
0.5493 | 12.0 | 24 | 0.6582 | 0.9219 |
0.5493 | 13.0 | 26 | 0.7018 | 0.9219 |
0.5493 | 14.0 | 28 | 0.7868 | 0.9062 |
0.4311 | 15.0 | 30 | 0.8397 | 0.9062 |
0.4311 | 16.0 | 32 | 0.8642 | 0.9062 |
0.4311 | 17.0 | 34 | 0.8456 | 0.9062 |
0.4311 | 18.0 | 36 | 0.7841 | 0.9062 |
0.4311 | 19.0 | 38 | 0.6959 | 0.9062 |
0.3814 | 20.0 | 40 | 0.6684 | 0.9062 |
0.3814 | 21.0 | 42 | 0.6086 | 0.9219 |
0.3814 | 22.0 | 44 | 0.5737 | 0.9375 |
0.3814 | 23.0 | 46 | 0.5216 | 0.9375 |
0.3814 | 24.0 | 48 | 0.4856 | 0.9375 |
0.3304 | 25.0 | 50 | 0.4508 | 0.9531 |
0.3304 | 26.0 | 52 | 0.4121 | 0.9531 |
0.3304 | 27.0 | 54 | 0.3536 | 0.9531 |
0.3304 | 28.0 | 56 | 0.2920 | 0.9688 |
0.3304 | 29.0 | 58 | 0.2699 | 0.9688 |
0.2882 | 30.0 | 60 | 0.2532 | 0.9688 |
0.2882 | 31.0 | 62 | 0.2417 | 0.9688 |
0.2882 | 32.0 | 64 | 0.2335 | 0.9688 |
0.2882 | 33.0 | 66 | 0.2233 | 0.9688 |
0.2882 | 34.0 | 68 | 0.2204 | 0.9688 |
0.0526 | 35.0 | 70 | 0.2195 | 0.9688 |
0.0526 | 36.0 | 72 | 0.2246 | 0.9688 |
0.0526 | 37.0 | 74 | 0.2375 | 0.9688 |
0.0526 | 38.0 | 76 | 0.2515 | 0.9688 |
0.0526 | 39.0 | 78 | 0.2652 | 0.9688 |
0.0054 | 40.0 | 80 | 0.2865 | 0.9531 |
0.0054 | 41.0 | 82 | 0.3170 | 0.9531 |
0.0054 | 42.0 | 84 | 0.3356 | 0.9531 |
0.0054 | 43.0 | 86 | 0.3346 | 0.9531 |
0.0054 | 44.0 | 88 | 0.3329 | 0.9531 |
0.0011 | 45.0 | 90 | 0.3320 | 0.9531 |
0.0011 | 46.0 | 92 | 0.3160 | 0.9531 |
0.0011 | 47.0 | 94 | 0.3016 | 0.9531 |
0.0011 | 48.0 | 96 | 0.2909 | 0.9688 |
0.0011 | 49.0 | 98 | 0.2851 | 0.9688 |
0.0003 | 50.0 | 100 | 0.2829 | 0.9688 |
0.0003 | 51.0 | 102 | 0.2822 | 0.9688 |
0.0003 | 52.0 | 104 | 0.2822 | 0.9688 |
0.0003 | 53.0 | 106 | 0.2827 | 0.9688 |
0.0003 | 54.0 | 108 | 0.2836 | 0.9688 |
0.0001 | 55.0 | 110 | 0.2852 | 0.9688 |
0.0001 | 56.0 | 112 | 0.2871 | 0.9688 |
0.0001 | 57.0 | 114 | 0.2892 | 0.9688 |
0.0001 | 58.0 | 116 | 0.2920 | 0.9688 |
0.0001 | 59.0 | 118 | 0.2965 | 0.9688 |
0.0001 | 60.0 | 120 | 0.3036 | 0.9688 |
0.0001 | 61.0 | 122 | 0.3120 | 0.9531 |
0.0001 | 62.0 | 124 | 0.3212 | 0.9531 |
0.0001 | 63.0 | 126 | 0.3298 | 0.9531 |
0.0001 | 64.0 | 128 | 0.3377 | 0.9531 |
0.0001 | 65.0 | 130 | 0.3450 | 0.9531 |
0.0001 | 66.0 | 132 | 0.3513 | 0.9531 |
0.0001 | 67.0 | 134 | 0.3585 | 0.9531 |
0.0001 | 68.0 | 136 | 0.3646 | 0.9531 |
0.0001 | 69.0 | 138 | 0.3696 | 0.9531 |
0.0001 | 70.0 | 140 | 0.3741 | 0.9531 |
0.0001 | 71.0 | 142 | 0.3783 | 0.9531 |
0.0001 | 72.0 | 144 | 0.3819 | 0.9531 |
0.0001 | 73.0 | 146 | 0.3852 | 0.9531 |
0.0001 | 74.0 | 148 | 0.3873 | 0.9531 |
0.0001 | 75.0 | 150 | 0.3896 | 0.9531 |
0.0001 | 76.0 | 152 | 0.3912 | 0.9531 |
0.0001 | 77.0 | 154 | 0.3921 | 0.9531 |
0.0001 | 78.0 | 156 | 0.3928 | 0.9531 |
0.0001 | 79.0 | 158 | 0.3933 | 0.9531 |
0.0 | 80.0 | 160 | 0.3939 | 0.9531 |
0.0 | 81.0 | 162 | 0.3949 | 0.9531 |
0.0 | 82.0 | 164 | 0.3961 | 0.9531 |
0.0 | 83.0 | 166 | 0.3973 | 0.9531 |
0.0 | 84.0 | 168 | 0.3989 | 0.9531 |
0.0 | 85.0 | 170 | 0.4004 | 0.9531 |
0.0 | 86.0 | 172 | 0.4020 | 0.9531 |
0.0 | 87.0 | 174 | 0.4036 | 0.9531 |
0.0 | 88.0 | 176 | 0.4052 | 0.9531 |
0.0 | 89.0 | 178 | 0.4067 | 0.9531 |
0.0 | 90.0 | 180 | 0.4084 | 0.9531 |
0.0 | 91.0 | 182 | 0.4101 | 0.9531 |
0.0 | 92.0 | 184 | 0.4118 | 0.9531 |
0.0 | 93.0 | 186 | 0.4135 | 0.9531 |
0.0 | 94.0 | 188 | 0.4149 | 0.9531 |
0.0 | 95.0 | 190 | 0.4163 | 0.9531 |
0.0 | 96.0 | 192 | 0.4176 | 0.9531 |
0.0 | 97.0 | 194 | 0.4189 | 0.9531 |
0.0 | 98.0 | 196 | 0.4204 | 0.9531 |
0.0 | 99.0 | 198 | 0.4218 | 0.9531 |
0.0 | 100.0 | 200 | 0.4232 | 0.9531 |
0.0 | 101.0 | 202 | 0.4246 | 0.9531 |
0.0 | 102.0 | 204 | 0.4261 | 0.9531 |
0.0 | 103.0 | 206 | 0.4277 | 0.9531 |
0.0 | 104.0 | 208 | 0.4291 | 0.9531 |
0.0 | 105.0 | 210 | 0.4304 | 0.9531 |
0.0 | 106.0 | 212 | 0.4315 | 0.9531 |
0.0 | 107.0 | 214 | 0.4327 | 0.9531 |
0.0 | 108.0 | 216 | 0.4339 | 0.9531 |
0.0 | 109.0 | 218 | 0.4350 | 0.9531 |
0.0 | 110.0 | 220 | 0.4362 | 0.9531 |
0.0 | 111.0 | 222 | 0.4373 | 0.9531 |
0.0 | 112.0 | 224 | 0.4381 | 0.9531 |
0.0 | 113.0 | 226 | 0.4391 | 0.9531 |
0.0 | 114.0 | 228 | 0.4400 | 0.9531 |
0.0 | 115.0 | 230 | 0.4410 | 0.9531 |
0.0 | 116.0 | 232 | 0.4421 | 0.9531 |
0.0 | 117.0 | 234 | 0.4432 | 0.9531 |
0.0 | 118.0 | 236 | 0.4443 | 0.9531 |
0.0 | 119.0 | 238 | 0.4453 | 0.9531 |
0.0 | 120.0 | 240 | 0.4467 | 0.9531 |
0.0 | 121.0 | 242 | 0.4479 | 0.9531 |
0.0 | 122.0 | 244 | 0.4489 | 0.9531 |
0.0 | 123.0 | 246 | 0.4498 | 0.9531 |
0.0 | 124.0 | 248 | 0.4507 | 0.9531 |
0.0 | 125.0 | 250 | 0.4514 | 0.9531 |
0.0 | 126.0 | 252 | 0.4521 | 0.9531 |
0.0 | 127.0 | 254 | 0.4528 | 0.9531 |
0.0 | 128.0 | 256 | 0.4534 | 0.9531 |
0.0 | 129.0 | 258 | 0.4540 | 0.9531 |
0.0 | 130.0 | 260 | 0.4547 | 0.9531 |
0.0 | 131.0 | 262 | 0.4553 | 0.9531 |
0.0 | 132.0 | 264 | 0.4560 | 0.9531 |
0.0 | 133.0 | 266 | 0.4567 | 0.9531 |
0.0 | 134.0 | 268 | 0.4574 | 0.9531 |
0.0 | 135.0 | 270 | 0.4580 | 0.9531 |
0.0 | 136.0 | 272 | 0.4584 | 0.9531 |
0.0 | 137.0 | 274 | 0.4589 | 0.9531 |
0.0 | 138.0 | 276 | 0.4594 | 0.9531 |
0.0 | 139.0 | 278 | 0.4597 | 0.9531 |
0.0 | 140.0 | 280 | 0.4602 | 0.9531 |
0.0 | 141.0 | 282 | 0.4607 | 0.9531 |
0.0 | 142.0 | 284 | 0.4612 | 0.9531 |
0.0 | 143.0 | 286 | 0.4616 | 0.9531 |
0.0 | 144.0 | 288 | 0.4621 | 0.9531 |
0.0 | 145.0 | 290 | 0.4625 | 0.9531 |
0.0 | 146.0 | 292 | 0.4630 | 0.9531 |
0.0 | 147.0 | 294 | 0.4635 | 0.9531 |
0.0 | 148.0 | 296 | 0.4640 | 0.9531 |
0.0 | 149.0 | 298 | 0.4644 | 0.9531 |
0.0 | 150.0 | 300 | 0.4649 | 0.9531 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.4.0
- Tokenizers 0.13.3