bert-large-uncased-sst-2-64-13

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7922
  • Accuracy: 0.9062

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 4 0.7522 0.4922
No log 2.0 8 0.7425 0.4922
0.76 3.0 12 0.7340 0.4922
0.76 4.0 16 0.7249 0.4922
0.7156 5.0 20 0.7169 0.4922
0.7156 6.0 24 0.7071 0.4922
0.7156 7.0 28 0.6967 0.4922
0.696 8.0 32 0.6778 0.4922
0.696 9.0 36 0.6520 0.5391
0.6324 10.0 40 0.6192 0.6562
0.6324 11.0 44 0.5962 0.7109
0.6324 12.0 48 0.5862 0.6953
0.5297 13.0 52 0.5024 0.8359
0.5297 14.0 56 0.4287 0.8438
0.3191 15.0 60 0.3940 0.8281
0.3191 16.0 64 0.3352 0.8828
0.3191 17.0 68 0.3640 0.8359
0.1373 18.0 72 0.2822 0.9062
0.1373 19.0 76 0.2677 0.9062
0.0624 20.0 80 0.2650 0.9219
0.0624 21.0 84 0.2758 0.9141
0.0624 22.0 88 0.2662 0.9141
0.0257 23.0 92 0.3016 0.9141
0.0257 24.0 96 0.3611 0.8906
0.0118 25.0 100 0.3683 0.8984
0.0118 26.0 104 0.3733 0.8984
0.0118 27.0 108 0.3953 0.8984
0.0065 28.0 112 0.4194 0.8984
0.0065 29.0 116 0.4195 0.8984
0.0042 30.0 120 0.4249 0.8984
0.0042 31.0 124 0.4360 0.9062
0.0042 32.0 128 0.4412 0.9062
0.0033 33.0 132 0.4467 0.9062
0.0033 34.0 136 0.4550 0.9062
0.0026 35.0 140 0.4652 0.9062
0.0026 36.0 144 0.4725 0.9062
0.0026 37.0 148 0.4796 0.9062
0.0021 38.0 152 0.4906 0.9062
0.0021 39.0 156 0.5007 0.9062
0.0019 40.0 160 0.5109 0.9062
0.0019 41.0 164 0.5194 0.9062
0.0019 42.0 168 0.5274 0.9062
0.0014 43.0 172 0.5348 0.9062
0.0014 44.0 176 0.5408 0.9062
0.0012 45.0 180 0.5484 0.9062
0.0012 46.0 184 0.5577 0.9062
0.0012 47.0 188 0.5688 0.9062
0.0009 48.0 192 0.5802 0.8984
0.0009 49.0 196 0.5905 0.8984
0.0007 50.0 200 0.6000 0.8984
0.0007 51.0 204 0.6085 0.8984
0.0007 52.0 208 0.6164 0.8984
0.0006 53.0 212 0.6250 0.8984
0.0006 54.0 216 0.6326 0.8984
0.0005 55.0 220 0.6389 0.8984
0.0005 56.0 224 0.6453 0.8984
0.0005 57.0 228 0.6451 0.8984
0.0005 58.0 232 0.6473 0.9062
0.0005 59.0 236 0.6512 0.9062
0.0003 60.0 240 0.6561 0.9062
0.0003 61.0 244 0.6620 0.9062
0.0003 62.0 248 0.6680 0.9062
0.0003 63.0 252 0.6736 0.9062
0.0003 64.0 256 0.6788 0.9062
0.0003 65.0 260 0.6836 0.9062
0.0003 66.0 264 0.6880 0.9062
0.0003 67.0 268 0.6923 0.9062
0.0002 68.0 272 0.6954 0.9062
0.0002 69.0 276 0.6983 0.9062
0.0002 70.0 280 0.7008 0.9062
0.0002 71.0 284 0.7032 0.9062
0.0002 72.0 288 0.7059 0.9062
0.0002 73.0 292 0.7085 0.9062
0.0002 74.0 296 0.7112 0.9062
0.0002 75.0 300 0.7144 0.9062
0.0002 76.0 304 0.7173 0.9062
0.0002 77.0 308 0.7199 0.9062
0.0002 78.0 312 0.7223 0.9062
0.0002 79.0 316 0.7247 0.9062
0.0002 80.0 320 0.7272 0.9062
0.0002 81.0 324 0.7295 0.9062
0.0002 82.0 328 0.7318 0.9062
0.0001 83.0 332 0.7341 0.9062
0.0001 84.0 336 0.7362 0.9062
0.0001 85.0 340 0.7383 0.9062
0.0001 86.0 344 0.7402 0.9062
0.0001 87.0 348 0.7417 0.9062
0.0001 88.0 352 0.7430 0.9062
0.0001 89.0 356 0.7445 0.9062
0.0001 90.0 360 0.7458 0.9062
0.0001 91.0 364 0.7470 0.9062
0.0001 92.0 368 0.7463 0.9062
0.0001 93.0 372 0.7463 0.9062
0.0001 94.0 376 0.7466 0.9062
0.0001 95.0 380 0.7472 0.9062
0.0001 96.0 384 0.7469 0.9062
0.0001 97.0 388 0.7472 0.9062
0.0001 98.0 392 0.7480 0.9062
0.0001 99.0 396 0.7488 0.9062
0.0001 100.0 400 0.7501 0.9062
0.0001 101.0 404 0.7514 0.9062
0.0001 102.0 408 0.7527 0.9062
0.0001 103.0 412 0.7539 0.9062
0.0001 104.0 416 0.7551 0.9062
0.0001 105.0 420 0.7563 0.9062
0.0001 106.0 424 0.7575 0.9062
0.0001 107.0 428 0.7584 0.9062
0.0001 108.0 432 0.7593 0.9062
0.0001 109.0 436 0.7603 0.9062
0.0001 110.0 440 0.7612 0.9062
0.0001 111.0 444 0.7622 0.9062
0.0001 112.0 448 0.7631 0.9062
0.0001 113.0 452 0.7640 0.9062
0.0001 114.0 456 0.7650 0.9062
0.0001 115.0 460 0.7659 0.9062
0.0001 116.0 464 0.7669 0.9062
0.0001 117.0 468 0.7677 0.9062
0.0001 118.0 472 0.7686 0.9062
0.0001 119.0 476 0.7693 0.9062
0.0001 120.0 480 0.7701 0.9062
0.0001 121.0 484 0.7708 0.9062
0.0001 122.0 488 0.7756 0.9062
0.0015 123.0 492 0.7777 0.9062
0.0015 124.0 496 0.7776 0.9062
0.0001 125.0 500 0.7776 0.9062
0.0001 126.0 504 0.7780 0.9062
0.0001 127.0 508 0.7786 0.9062
0.0001 128.0 512 0.7794 0.9062
0.0001 129.0 516 0.7803 0.9062
0.0002 130.0 520 0.7822 0.9062
0.0002 131.0 524 0.7843 0.9062
0.0002 132.0 528 0.7859 0.9062
0.0001 133.0 532 0.7871 0.9062
0.0001 134.0 536 0.7880 0.9062
0.0001 135.0 540 0.7887 0.9062
0.0001 136.0 544 0.7894 0.9062
0.0001 137.0 548 0.7899 0.9062
0.0001 138.0 552 0.7903 0.9062
0.0001 139.0 556 0.7907 0.9062
0.0001 140.0 560 0.7910 0.9062
0.0001 141.0 564 0.7912 0.9062
0.0001 142.0 568 0.7914 0.9062
0.0001 143.0 572 0.7916 0.9062
0.0001 144.0 576 0.7918 0.9062
0.0001 145.0 580 0.7919 0.9062
0.0001 146.0 584 0.7920 0.9062
0.0001 147.0 588 0.7921 0.9062
0.0001 148.0 592 0.7922 0.9062
0.0001 149.0 596 0.7922 0.9062
0.0001 150.0 600 0.7922 0.9062

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.4.0
  • Tokenizers 0.13.3
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for simonycl/bert-large-uncased-sst-2-64-13

Finetuned
(116)
this model