metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-base-uncased-sst-2-16-13-smoothed
results: []
bert-base-uncased-sst-2-16-13-smoothed
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6686
- Accuracy: 0.6875
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 75
- label_smoothing_factor: 0.45
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 1 | 0.7007 | 0.5 |
No log | 2.0 | 2 | 0.7007 | 0.5 |
No log | 3.0 | 3 | 0.7005 | 0.5 |
No log | 4.0 | 4 | 0.7004 | 0.5 |
No log | 5.0 | 5 | 0.7001 | 0.5 |
No log | 6.0 | 6 | 0.6998 | 0.5 |
No log | 7.0 | 7 | 0.6994 | 0.5 |
No log | 8.0 | 8 | 0.6990 | 0.5 |
No log | 9.0 | 9 | 0.6986 | 0.5 |
0.6996 | 10.0 | 10 | 0.6982 | 0.5 |
0.6996 | 11.0 | 11 | 0.6977 | 0.5 |
0.6996 | 12.0 | 12 | 0.6972 | 0.5 |
0.6996 | 13.0 | 13 | 0.6967 | 0.5312 |
0.6996 | 14.0 | 14 | 0.6962 | 0.5312 |
0.6996 | 15.0 | 15 | 0.6956 | 0.5 |
0.6996 | 16.0 | 16 | 0.6950 | 0.5312 |
0.6996 | 17.0 | 17 | 0.6944 | 0.5625 |
0.6996 | 18.0 | 18 | 0.6939 | 0.625 |
0.6996 | 19.0 | 19 | 0.6935 | 0.5938 |
0.6877 | 20.0 | 20 | 0.6930 | 0.5625 |
0.6877 | 21.0 | 21 | 0.6926 | 0.5625 |
0.6877 | 22.0 | 22 | 0.6920 | 0.5938 |
0.6877 | 23.0 | 23 | 0.6915 | 0.5938 |
0.6877 | 24.0 | 24 | 0.6909 | 0.5938 |
0.6877 | 25.0 | 25 | 0.6903 | 0.5938 |
0.6877 | 26.0 | 26 | 0.6897 | 0.5625 |
0.6877 | 27.0 | 27 | 0.6892 | 0.5625 |
0.6877 | 28.0 | 28 | 0.6888 | 0.5625 |
0.6877 | 29.0 | 29 | 0.6880 | 0.5625 |
0.6693 | 30.0 | 30 | 0.6873 | 0.5625 |
0.6693 | 31.0 | 31 | 0.6872 | 0.5625 |
0.6693 | 32.0 | 32 | 0.6869 | 0.5938 |
0.6693 | 33.0 | 33 | 0.6863 | 0.5625 |
0.6693 | 34.0 | 34 | 0.6857 | 0.5625 |
0.6693 | 35.0 | 35 | 0.6851 | 0.5625 |
0.6693 | 36.0 | 36 | 0.6844 | 0.5938 |
0.6693 | 37.0 | 37 | 0.6836 | 0.5938 |
0.6693 | 38.0 | 38 | 0.6825 | 0.5938 |
0.6693 | 39.0 | 39 | 0.6818 | 0.5625 |
0.6173 | 40.0 | 40 | 0.6815 | 0.5625 |
0.6173 | 41.0 | 41 | 0.6816 | 0.5625 |
0.6173 | 42.0 | 42 | 0.6812 | 0.5938 |
0.6173 | 43.0 | 43 | 0.6804 | 0.625 |
0.6173 | 44.0 | 44 | 0.6794 | 0.6562 |
0.6173 | 45.0 | 45 | 0.6781 | 0.6562 |
0.6173 | 46.0 | 46 | 0.6770 | 0.6562 |
0.6173 | 47.0 | 47 | 0.6761 | 0.6562 |
0.6173 | 48.0 | 48 | 0.6757 | 0.6562 |
0.6173 | 49.0 | 49 | 0.6746 | 0.6562 |
0.5541 | 50.0 | 50 | 0.6736 | 0.6562 |
0.5541 | 51.0 | 51 | 0.6730 | 0.6562 |
0.5541 | 52.0 | 52 | 0.6725 | 0.6562 |
0.5541 | 53.0 | 53 | 0.6703 | 0.6562 |
0.5541 | 54.0 | 54 | 0.6682 | 0.6562 |
0.5541 | 55.0 | 55 | 0.6671 | 0.6562 |
0.5541 | 56.0 | 56 | 0.6660 | 0.6562 |
0.5541 | 57.0 | 57 | 0.6652 | 0.6562 |
0.5541 | 58.0 | 58 | 0.6651 | 0.6562 |
0.5541 | 59.0 | 59 | 0.6652 | 0.6562 |
0.5403 | 60.0 | 60 | 0.6654 | 0.6875 |
0.5403 | 61.0 | 61 | 0.6660 | 0.6562 |
0.5403 | 62.0 | 62 | 0.6664 | 0.6562 |
0.5403 | 63.0 | 63 | 0.6666 | 0.6562 |
0.5403 | 64.0 | 64 | 0.6675 | 0.6562 |
0.5403 | 65.0 | 65 | 0.6684 | 0.6562 |
0.5403 | 66.0 | 66 | 0.6692 | 0.6562 |
0.5403 | 67.0 | 67 | 0.6699 | 0.6562 |
0.5403 | 68.0 | 68 | 0.6703 | 0.6562 |
0.5403 | 69.0 | 69 | 0.6705 | 0.6562 |
0.538 | 70.0 | 70 | 0.6706 | 0.6562 |
0.538 | 71.0 | 71 | 0.6703 | 0.6562 |
0.538 | 72.0 | 72 | 0.6696 | 0.6562 |
0.538 | 73.0 | 73 | 0.6691 | 0.6562 |
0.538 | 74.0 | 74 | 0.6688 | 0.6562 |
0.538 | 75.0 | 75 | 0.6686 | 0.6875 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.4.0
- Tokenizers 0.13.3