metadata
library_name: transformers
license: gemma
base_model: google/gemma-7b
tags:
- trl
- orpo
- alignment-handbook
- generated_from_trainer
model-index:
- name: gemma-7b-orpo-low-quality
results: []
gemma-7b-orpo-low-quality
This model is a fine-tuned version of google/gemma-7b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.6395
- Rewards/chosen: -0.0601
- Rewards/rejected: -0.0755
- Rewards/accuracies: 0.6029
- Rewards/margins: 0.0153
- Logps/rejected: -1.5091
- Logps/chosen: -1.2026
- Logits/rejected: 275.9735
- Logits/chosen: 286.3763
- Nll Loss: 1.5847
- Log Odds Ratio: -0.6702
- Log Odds Chosen: 0.4438
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.4933 | 0.9976 | 157 | 1.4686 | -0.0501 | -0.0608 | 0.5776 | 0.0107 | -1.2166 | -1.0023 | 307.1602 | 318.2524 | 1.4127 | -0.6558 | 0.3240 |
1.036 | 1.9952 | 314 | 1.4194 | -0.0493 | -0.0612 | 0.5668 | 0.0118 | -1.2231 | -0.9867 | 302.5974 | 312.9305 | 1.3670 | -0.6609 | 0.3487 |
0.56 | 2.9929 | 471 | 1.6395 | -0.0601 | -0.0755 | 0.6029 | 0.0153 | -1.5091 | -1.2026 | 275.9735 | 286.3763 | 1.5847 | -0.6702 | 0.4438 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1