silviasapora's picture
Model save
7d94d4f verified
|
raw
history blame
2.85 kB
metadata
library_name: transformers
license: gemma
base_model: google/gemma-7b
tags:
  - trl
  - orpo
  - alignment-handbook
  - generated_from_trainer
model-index:
  - name: gemma-7b-orpo-low-quality
    results: []

gemma-7b-orpo-low-quality

This model is a fine-tuned version of google/gemma-7b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6395
  • Rewards/chosen: -0.0601
  • Rewards/rejected: -0.0755
  • Rewards/accuracies: 0.6029
  • Rewards/margins: 0.0153
  • Logps/rejected: -1.5091
  • Logps/chosen: -1.2026
  • Logits/rejected: 275.9735
  • Logits/chosen: 286.3763
  • Nll Loss: 1.5847
  • Log Odds Ratio: -0.6702
  • Log Odds Chosen: 0.4438

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: inverse_sqrt
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
1.4933 0.9976 157 1.4686 -0.0501 -0.0608 0.5776 0.0107 -1.2166 -1.0023 307.1602 318.2524 1.4127 -0.6558 0.3240
1.036 1.9952 314 1.4194 -0.0493 -0.0612 0.5668 0.0118 -1.2231 -0.9867 302.5974 312.9305 1.3670 -0.6609 0.3487
0.56 2.9929 471 1.6395 -0.0601 -0.0755 0.6029 0.0153 -1.5091 -1.2026 275.9735 286.3763 1.5847 -0.6702 0.4438

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1