Edit model card

finetune-longt5

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9551
  • Rouge1 Precision: 0.2602
  • Rouge1 Recall: 0.3322
  • Rouge1 Fmeasure: 0.2861

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rouge1 Fmeasure Rouge1 Precision Rouge1 Recall
2.5865 0.03 10 2.4019 0.2349 0.2481 0.2353
2.3384 0.06 20 2.2294 0.2404 0.2571 0.2385
2.0876 0.1 30 2.2887 0.2467 0.2653 0.2432
2.1205 0.13 40 2.2194 0.2517 0.2731 0.246
2.0637 0.16 50 2.2172 0.2577 0.2868 0.246
1.8623 0.19 60 2.2273 0.2613 0.2903 0.2497
0.0 0.22 70 nan 0.262 0.2911 0.25
1.8591 0.26 80 2.1895 0.2604 0.2901 0.2481
1.9819 0.29 90 2.1492 0.2663 0.2917 0.2575
1.9326 0.32 100 2.1248 0.2698 0.2964 0.2608
1.888 0.35 110 2.1253 0.2698 0.2954 0.2614
1.8934 0.38 120 2.0993 0.2705 0.3006 0.2589
1.8357 0.42 130 2.1050 0.2744 0.3001 0.267
1.8061 0.45 140 2.0705 0.2787 0.2924 0.2829
1.8444 0.48 150 2.1156 0.2739 0.2895 0.2762
1.83 0.51 160 2.0636 0.2773 0.2895 0.2831
1.7433 0.54 170 2.0857 0.2767 0.2811 0.29
1.7523 0.58 180 2.0809 0.2766 0.2798 0.2913
1.764 0.61 190 2.0351 0.2799 0.2751 0.3041
1.8441 0.64 200 2.0460 0.2804 0.2772 0.3025
1.7118 0.67 210 2.0319 0.2798 0.2767 0.3024
1.818 0.7 220 2.0287 0.2823 0.2666 0.318
1.7484 0.74 230 2.0084 0.2822 0.2653 0.3188
1.8224 0.77 240 2.0372 0.2787 0.2634 0.3132
1.6475 0.4 250 2.0281 0.2768 0.2594 0.3141
1.6915 0.42 260 1.9941 0.2851 0.2637 0.3269
1.7106 0.43 270 2.0204 0.2862 0.2718 0.3198
1.6382 0.45 280 2.0073 0.288 0.2657 0.3307
1.6017 0.46 290 2.0242 0.2847 0.2584 0.3328
1.8248 0.48 300 1.9996 0.2821 0.2595 0.3249
1.687 0.5 310 1.9801 0.2857 0.2664 0.3243
1.6993 0.51 320 1.9979 0.2837 0.2608 0.3271
1.6191 0.53 330 2.0025 0.285 0.2618 0.329
1.5409 0.54 340 1.9968 0.2851 0.2616 0.3293
1.6279 0.56 350 1.9940 0.2824 0.2601 0.3259
1.7538 0.58 360 1.9907 0.2803 0.2574 0.3234
1.6781 1.19 370 1.9684 0.2805 0.2565 0.3249
1.6106 1.22 380 1.9798 0.2842 0.2584 0.3314
1.5798 1.25 390 1.9940 0.2842 0.2581 0.3321
1.7134 1.28 400 1.9634 0.2851 0.2596 0.3313
1.6301 1.31 410 1.9644 0.2866 0.2606 0.3342
1.6657 1.35 420 1.9775 0.2861 0.2604 0.3325
1.7028 1.38 430 1.9792 0.2838 0.26 0.3275
1.7063 1.41 440 1.9728 0.2838 0.2598 0.3279
1.5825 1.44 450 1.9644 0.2838 0.259 0.3291
1.5955 1.47 460 1.9674 0.2864 0.2605 0.3329
1.6774 1.51 470 1.9718 0.288 0.2616 0.3354
1.7171 1.54 480 1.9602 0.2882 0.2619 0.3358
1.6631 1.57 490 1.9592 0.2873 0.2614 0.3335
1.5405 1.6 500 1.9625 0.2868 0.261 0.3329
1.5711 1.63 510 1.9690 0.2872 0.2614 0.3337
1.7382 1.67 520 1.9669 0.2873 0.262 0.3326
1.6345 1.7 530 1.9564 0.2867 0.2615 0.3323
1.6289 1.73 540 1.9558 0.2856 0.2604 0.3309
1.575 1.76 550 1.9620 0.2872 0.2616 0.333
1.682 1.79 560 1.9613 0.287 0.2615 0.3326
1.5385 1.83 570 1.9616 0.2869 0.2614 0.3324
1.62 1.86 580 1.9603 0.2868 0.2611 0.3325
1.6026 1.89 590 1.9589 0.2867 0.2611 0.3325
1.6511 1.92 600 1.9575 0.2865 0.2608 0.3322
1.5688 1.95 610 1.9555 0.2866 0.2608 0.3327
1.6092 1.99 620 1.9553 0.2863 0.2604 0.3324

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.15.1
Downloads last month
4
Safetensors
Model size
248M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.