File size: 9,328 Bytes
a8e184c
 
 
 
 
 
 
8d1ec92
a8e184c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ab6058
 
 
 
 
 
 
 
 
 
 
 
 
8d1ec92
 
 
 
 
a8e184c
 
 
 
 
abd3a64
a8e184c
b106b6f
a8e184c
a1c6330
d91a87f
f367187
a8e184c
 
77da07e
a8e184c
a1c6330
a8e184c
c7af964
a8e184c
f367187
a8e184c
 
 
 
 
 
 
 
 
 
 
 
06b0a44
 
a1c6330
06b0a44
 
5a25d96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06b0a44
 
 
 
 
 
a8e184c
 
9ab0916
a8e184c
 
 
 
 
 
 
 
 
 
 
 
66bf2c0
a8e184c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66bf2c0
 
06b0a44
 
66bf2c0
 
 
 
06b0a44
 
 
66bf2c0
a8e184c
 
66bf2c0
a8e184c
 
 
 
 
 
 
06b0a44
a8e184c
06b0a44
a8e184c
 
9a72eea
 
c13e675
 
 
 
 
9a72eea
42a2272
77da07e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ab0916
77da07e
 
 
 
 
 
 
 
a8e184c
 
 
 
 
 
 
 
 
 
 
a75a043
 
a8e184c
 
bdea432
 
 
 
 
a8e184c
 
 
 
3a214a9
 
 
a8e184c
 
 
 
 
 
 
 
 
 
 
 
 
9ab0916
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
---
license: gemma
library_name: transformers
pipeline_tag: text-generation
extra_gated_button_content: Acknowledge license
tags:
- rag
- qa
language:
- ar
- en
model-index:
- name: SILMA-Kashif-2B-Instruct-v1.0
  results:
  - task:
      type: text-generation
    dataset:
      name: SILMA RAGQA Benchmark Dataset V1.0
      type: silma-ai/silma-rag-qa-benchmark-v1.0
    metrics:
    - name: SILMA RAGQA Benchmark Score
      type: Average of Exact Match, BLEU, ROUGE, and BERTScore.
      value: 0.347
    source:
      name: SILMA RAGQA Benchmark
      url: https://huggingface.co./datasets/silma-ai/silma-rag-qa-benchmark-v1.0
  - task:
      type: text-generation
    dataset:
      name: OALL (All)
      type: OALL/Open-Arabic-LLM-Leaderboard
    metrics:
      - name: acc_norm
        type: loglikelihood_acc_norm
        value: 44.61
    source:
      name: Open Arabic LLM Leaderboard
      url: https://huggingface.co./spaces/OALL/Open-Arabic-LLM-Leaderboard

metrics:
- bleu
- bertscore
- rouge
- exact_match
---




## SILMA Kashif v1.0 (The Arabic RAG Model)

* **SILMA Kashif 2B Instruct v1.0** is the premier release within the SILMA Kashif Family of models, specifically designed for **RAG** (Retrieval-Augmented Generation) tasks
* Kashif excels in a specific task, answering questions based on contextual pieces in both Arabic and English. In addition, the model is also capable of performing Entity Extraction tasks as a minor skill
* SILMA Kashif 2B v1.0 stands out as the top-performing open model in RAG within the 3-9 billion parameter range based on our evaluations using [SILMA RAGQA Benchmark](https://huggingface.co./datasets/silma-ai/silma-rag-qa-benchmark-v1.0)
* SILMA Kashif is built on the powerful foundational models of Google Gemma, merging their strengths to deliver unmatched performance for users
* Kashif is an open-weight model, free to use in accordance with our open license
* Finally, the model comes with a context length of 12k

**Important note:** Kashif is a specialized model which should ONLY be used in RAG setups. If you are looking for a general purpose model, please refer to [SILMA 9B Instruct v1.0](https://huggingface.co./silma-ai/SILMA-9B-Instruct-v1.0)

## Model Skills and Capabilities

The model underwent intensive training to master a wide range of tasks and excel in performance.

- The ability to answer questions in Arabic and English
- The ability to deal with short and long contexts
- The ability to provide short and long answers effectively
- The ability to answer complex numerical questions
- The ability to answer questions based on tabular data
- Answering multi-hop questions: The ability to answer a single question using pieces of data from multiple paragraphs
- Negative rejection: The ability to identify and exclude inaccurate answers, and provide a more accurate statement such as "The answer cannot be found in the given context"
- Multi-domains: The ability to answer questions based on texts from different fields such as finance, medical, legal, etc.
- The ability to deal with ambiguous contexts
- The ability to extract entities from text
- Ability to deal with diverse and complex prompts


## Model Evaluation

![silma-ragqa-benchmark-colored-2.png](https://cdn-uploads.huggingface.co/production/uploads/63d7acf73130cadcaf827e84/ufxxuArISZTVhK5q7YzaI.png)


|Dataset                               | exact_match |  rouge1 | bleu | bertscore|
|---|---|---|---|---|
|ragbench-finqa-en-test                   | 0.000  | 0.587 | 0.321    |   0.760|
|ragbench-tatqa-ar-test                   | 0.000  | 0.484 | 0.130    |   0.774|
|ragbench-tatqa-en-test                   | 0.059  | 0.646 | 0.423    |   0.808|
|rag-instruct-benchmark-tester-en         | 0.370  | 0.683 | 0.196    |   0.791|
|ragbench-expertqa-en-test                |0.000   | 0.465 | 0.151    |   0.677|
|ragbench-msmarco-ar-test                 |0.000   | 0.144 | 0.096    |   0.781|
|sciq-ar-test                             |0.170   | 0.000 | 0.000    |   0.753|
|ragbench-covidqa-en-test                 |0.020   | 0.521 | 0.242    |   0.734|
|ragbench-emanual-ar-test                 |0.000   | 0.237 | 0.159    |   0.806|
|ragbench-finqa-ar-test                   |0.000   | 0.377 | 0.109    |   0.780|
|xquad-r-validation-en                    |0.120   | 0.326 | 0.041    |   0.603|
|ragbench-emanual-en-test                 |0.000   | 0.565 | 0.288    |   0.722|
|xquad-r-ar-validation                    |0.070   | 0.130 | 0.042    |   0.698|
|boolq-ar-test                            |0.450   | 0.000 | 0.000    |   0.700|
|ragbench-hotpotqa-en-test                |0.060   | 0.732 | 0.503    |   0.837|
|ragbench-covidqa-ar-test                 |0.000   | 0.179 | 0.104    |   0.783|
|ragbench-msmarco-en-test                 |0.020   | 0.491 | 0.207    |   0.729|
|### Benchmark Average Scores             |0.079   | 0.386 | 0.177    |   0.749|


SILMA RAG QA Benchmark Score: 0.3478



## SILMA AI

[silma.ai](https://silma.ai) is a leading GenAI startup that excels in building and tailoring cutting-edge Large Language Models (LLMs) and AI technologies for the Arabic language




### Usage

Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:

```sh
pip install -U transformers
```

Then, copy the snippet from the section below

#### Running with the `pipeline` API

```python
import torch
from transformers import pipeline

pipe = pipeline(
    "text-generation",
    model="silma-ai/SILMA-Kashif-2B-Instruct-v1.0",
    model_kwargs={"torch_dtype": torch.bfloat16},
    device="cuda",  # replace with "mps" to run on a Mac device
)

messages = [
    {"role": "user", "content":
"""
أجب على السؤال بناءً على السياق أدناه

السياق:
تشمل الاتفاقيات رسوم حمل سنوية ثابت قدها 30 مليون جنيه إسترليني للقنوات نظراً لأن كلاً من مزوديها قادرين على تأمين دفعات إضافية إذا ما حققت هذه القنوات أهدافاً متعلقةً بالأداء.
لا يوجد حالياً ما يشير إلى ما إذا كان الاتفاق الجديد يشمل محتوىً إضافياً كالفيديو عند الطلب والدقة العالية ، كذلك الذي سبق أن قدمته بي سكاي بي.
وقد وافقت كل من بي سكاي بي و فيرجين ميديا على إنهاء الدعاوى القضائية بالمحكمة العليا ضد بعضهما بشأن معاليم الحمل التي تخص قنواتهما الأساسية.

السؤال: ماسم الشركة التي وافقت على إنهاء دعواها القضائية ضد بي سكاي بي بالمحكمة العليا؟
الإجابة:
"""},
]

outputs = pipe(messages, max_new_tokens=600)
assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
print(assistant_response)
```

- Response:

```text
فيرجين ميديا

"وقد وافقت كل من بي سكاي بي و فيرجين ميديا على إنهاء الدعاوى القضائية بالمحكمة العليا ضد بعضهما بشأن معاليم الحمل التي تخص قنواتهما الأساسية."
```

Note: for advanced usage examples such as multi-gpu, quantization or chat templates, please refer to [SILMA v1.0](https://huggingface.co./silma-ai/SILMA-9B-Instruct-v1.0#running-the-model-on-a-single--multi-gpu) examples

### Runing with Ollama

```sh
ollama run hf.co/silma-ai/SILMA-Kashif-2B-Instruct-v1.0-GGUF
```

### Prompt Format

Here is a recommended way to prompt the model. You can modify the prompt based on your specific requirements, but if you encounter any challenges, following the format below in which we used to train the model may be helpful.


- Arabic

```text
أجب على السؤال بناءً على السياق أدناه

السياق:
.....
.....

السؤال: ...
الإجابة: ...
``` 

- English

```text
Answer the following question using the provided context below

Context: 
.....
.....

Question: ...
Answer: ...
``` 

### GPU Requirements

The following are the minimum/recommended GPU requirements for running inference:
 
* Recommended
  * At least one GPU with a minimum of 24 GB of GPU memory
  * Examples: Nvidia RTX 4090

* Minimum

  * At least one GPU with 8 GB of GPU memory
  * Examples: Nvidia RTX 3070, RTX 3080 or T4


## Effect of Quantization

We have seen 2.6% drop in score (to 0.338) for the same model quantized 4bit


### Citation

```none
@article{silma_01_2025,
    title={SILMA Kashif 2B Instruct v1.0},
    url={https://huggingface.co./silma-ai/SILMA-Kashif-2B-Instruct-v1.0},
    publisher={SILMA AI},
    author={Silma Team},
    year={2025}
}
```


### Intended Usage

* The model should only be used in question answering use-cases such as RAG
* The model can also be used to extract entities from text

### Limitations

* Because it has few parameters, we've noticed that the model isn't very effective for handling complex numerical and financial reasoning, such as solving tricky calculations
* The model has been trained specifically for text-based question answering, which may limit its ability to perform tasks beyond this scope, including simple tasks