karimouda commited on
Commit
a8e184c
·
verified ·
1 Parent(s): 469a2c4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +147 -3
README.md CHANGED
@@ -1,3 +1,147 @@
1
- ---
2
- license: gemma
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gemma
3
+ library_name: transformers
4
+ pipeline_tag: text-generation
5
+ extra_gated_button_content: Acknowledge license
6
+ tags:
7
+ - rag
8
+ language:
9
+ - ar
10
+ - en
11
+ model-index:
12
+ - name: SILMA-Kashif-2B-Instruct-v1.0
13
+ results:
14
+ - task:
15
+ type: text-generation
16
+ dataset:
17
+ name: SILMA RAGQA Benchmark Dataset V1.0
18
+ type: silma-ai/silma-rag-qa-benchmark-v1.0
19
+ metrics:
20
+ - name: SILMA RAGQA Benchmark Score
21
+ type: Average of Exact Match, BLEU, ROUGE, and BERTScore.
22
+ value: 0.347
23
+ source:
24
+ name: SILMA RAGQA Benchmark
25
+ url: https://huggingface.co/datasets/silma-ai/silma-rag-qa-benchmark-v1.0
26
+ ---
27
+
28
+
29
+
30
+
31
+ ## SILMA Kashif Model
32
+
33
+ * **SILMA Kashif 2B Instruct v1.0** is the initial release within the SILMA Kashif Family of models, specifically designed for **RAG** (Retrieval-Augmented Generation) tasks
34
+ * Kashif excels in a specific task, answering questions based on contextual pieces in both Arabic and English. In addition, the model is also capable of performing Entity Extraction tasks as a minor skill
35
+ * SILMA Kashif 2B v1.0 stands out as the top-performing open model within the 3-9 billion parameter range based on our evaluations using [SILMA RAGQA Benchmark](https://huggingface.co/datasets/silma-ai/silma-rag-qa-benchmark-v1.0)
36
+ * SILMA is built over the robust foundational models of Google Gemma, combining the strengths of both to provide you with unparalleled performance
37
+ * SILMA is an open-weight model, free to use in accordance with our open license
38
+ * Finally, the model comes with a context length of 12k
39
+
40
+
41
+ ## Model Skill and Capabilities
42
+
43
+ The large language model underwent rigorous training to excel in performing a variety of skills:
44
+
45
+ - The ability to answer general questions in Arabic and English
46
+ - The ability to deal with short and long contexts
47
+ - The ability to provide short and long answers effectively
48
+ - The ability to answer complex numerical questions
49
+ - The ability to answer questions based on tabular data
50
+ - Answering multi-hop questions: The ability to answer a single question using pieces of data from multiple paragraphs
51
+ - Negative rejection: The ability to identify and exclude inaccurate answers, and provide a more accurate statement such as "The answer cannot be found in the given context"
52
+ - Multi-domains: The ability to answer questions based on texts from different fields such as finance, medical, legal, etc.
53
+ - The ability to deal with ambiguous contexts
54
+ - The ability to extract entities from text
55
+ - Ability to deal with diverse and complex prompts
56
+
57
+
58
+ ## SILMA AI
59
+
60
+ [silma.ai](https://silma.ai) is a leading Generative AI startup dedicated to empowering Arabic speakers with state-of-the-art AI solutions.
61
+
62
+
63
+
64
+
65
+ ### Usage
66
+
67
+ Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:
68
+
69
+ ```sh
70
+ pip install -U transformers
71
+ ```
72
+
73
+ Then, copy the snippet from the section that is relevant for your usecase.
74
+
75
+ #### Running with the `pipeline` API
76
+
77
+ ```python
78
+ import torch
79
+ from transformers import pipeline
80
+
81
+ pipe = pipeline(
82
+ "text-generation",
83
+ model="silma-ai/SILMA-Kashif-2B-Instruct-v1.0",
84
+ model_kwargs={"torch_dtype": torch.bfloat16},
85
+ device="cuda", # replace with "mps" to run on a Mac device
86
+ )
87
+
88
+ messages = [
89
+ {"role": "user", "content": "اكتب رسالة تعتذر فيها لمديري في العمل عن الحضور اليوم لأسباب مرضية."},
90
+ ]
91
+
92
+ outputs = pipe(messages, max_new_tokens=256)
93
+ assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
94
+ print(assistant_response)
95
+ ```
96
+
97
+ - Response:
98
+
99
+ ```text
100
+ السلام عليكم ورحمة الله وبركاته
101
+
102
+ أودّ أن أعتذر عن عدم الحضور إلى العمل اليوم بسبب مرضي. أشعر بالسوء الشديد وأحتاج إلى الراحة. سأعود إلى العمل فور تعافيي.
103
+ شكراً لتفهمكم.
104
+
105
+ مع تحياتي،
106
+ [اسمك]
107
+ ```
108
+
109
+
110
+ ### GPU Requirements
111
+
112
+ The following are the minimum/recommended GPU requirements for running inference:
113
+
114
+ * Recommended
115
+ * At least one GPU with a minimum of 24 GB of GPU memory
116
+ * Examples: Nvidia RTX 4090
117
+
118
+ * Minimum
119
+
120
+ * At least one GPU with 8-12 GB of GPU memory
121
+ * Examples: Nvidia RTX 3070 or RTX 4070
122
+
123
+
124
+ ### Citation
125
+
126
+ ```none
127
+ @article{silma_01_2025,
128
+ title={Silma},
129
+ url={https://www.silma.ai},
130
+ publisher={Silma},
131
+ author={Silma Team},
132
+ year={2025}
133
+ }
134
+ ```
135
+
136
+ ## Usage and Limitations
137
+
138
+ These models have certain limitations that users should be aware of.
139
+
140
+ ### Intended Usage
141
+
142
+ * The model should only be used in question answering use-cases such as RAG
143
+ * The model can also be used to extract entities from text
144
+
145
+ ### Limitations
146
+
147
+ * Due to its small number of parameters, we have found the model not to be very strong in numercial and financial reasoning (Answeeing questions which requires calculation)