class_classificator_results
This model is a fine-tuned version of dbmdz/bert-base-german-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7191
- Precision: 0.9280
- Recall: 0.9280
- F1: 0.9280
- Accuracy: 0.9280
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.3487 | 1.0 | 2527 | 1.1844 | 0.8355 | 0.8355 | 0.8355 | 0.8355 |
0.9081 | 2.0 | 5054 | 0.9115 | 0.8897 | 0.8897 | 0.8897 | 0.8897 |
0.6327 | 3.0 | 7581 | 0.7873 | 0.9038 | 0.9038 | 0.9038 | 0.9038 |
0.3874 | 4.0 | 10108 | 0.7599 | 0.9196 | 0.9196 | 0.9196 | 0.9196 |
0.2643 | 5.0 | 12635 | 0.7191 | 0.9280 | 0.9280 | 0.9280 | 0.9280 |
0.2146 | 6.0 | 15162 | 0.7315 | 0.9300 | 0.9300 | 0.9300 | 0.9300 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.0.1+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 10
Model tree for sianbrumm/GPC_Class_Classificator_Food
Base model
dbmdz/bert-base-german-uncased