shtif's picture
update model card README.md
46c548c
|
raw
history blame
2.63 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results: []

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9594
  • Accuracy: 0.83

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.874 1.0 113 1.8949 0.42
1.2872 2.0 226 1.3293 0.57
0.9764 3.0 339 0.9030 0.72
0.5805 4.0 452 0.6561 0.83
0.4618 5.0 565 0.5127 0.87
0.1487 6.0 678 0.7336 0.77
0.1542 7.0 791 0.5496 0.84
0.267 8.0 904 0.6534 0.85
0.037 9.0 1017 0.7327 0.85
0.0089 10.0 1130 1.1979 0.76
0.0436 11.0 1243 1.0857 0.82
0.003 12.0 1356 0.9266 0.84
0.0019 13.0 1469 0.9791 0.84
0.0017 14.0 1582 0.9259 0.84
0.0015 15.0 1695 0.9836 0.83
0.0014 16.0 1808 1.0018 0.83
0.0013 17.0 1921 0.9896 0.83
0.0012 18.0 2034 0.9836 0.84
0.0012 19.0 2147 0.9759 0.84
0.0011 20.0 2260 0.9594 0.83

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.3
  • Tokenizers 0.13.3