BartCNN_finetune_4e / README.md
shruti28062000's picture
Upload tokenizer
9643dc3 verified
metadata
base_model: facebook/bart-large-cnn
license: mit
metrics:
  - rouge
tags:
  - generated_from_trainer
model-index:
  - name: bartcnn_finetune_4e
    results: []

bartcnn_finetune_4e

This model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3295
  • Rouge1: 39.7896
  • Rouge2: 18.8935
  • Rougel: 26.783
  • Rougelsum: 35.2813

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
0.4269 1.0 1522 0.3342 39.3787 18.9684 26.7717 34.7404
0.3743 2.0 3044 0.3276 39.977 18.9784 27.1332 35.5149
0.34 3.0 4566 0.3273 40.274 19.5907 27.3976 35.7839
0.3279 4.0 6088 0.3295 39.7896 18.8935 26.783 35.2813

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1