Whisper Large v2 Hindi

This model is a fine-tuned version of openai/whisper-large-v2 on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1915
  • Wer: 12.4241

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0936 0.37 100 0.2300 16.2100
0.09 0.73 200 0.2117 14.4876
0.0415 1.1 300 0.2048 13.0832
0.0372 1.47 400 0.1951 12.5559
0.0307 1.84 500 0.1915 12.4241

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train shripadbhat/whisper-large-v2-hindi

Evaluation results