shre-db's picture
update model card README.md
4409b68
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- sms_spam
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: bert-base-uncased-finetuned-smsspam
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: sms_spam
type: sms_spam
config: plain_text
split: train
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.9904420549581839
- name: Precision
type: precision
value: 0.9814814814814815
- name: Recall
type: recall
value: 0.9464285714285714
- name: F1
type: f1
value: 0.9636363636363636
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-smsspam
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the sms_spam dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0637
- Accuracy: 0.9904
- Precision: 0.9815
- Recall: 0.9464
- F1: 0.9636
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.0828 | 1.0 | 593 | 0.0538 | 0.9892 | 0.9725 | 0.9464 | 0.9593 |
| 0.0269 | 2.0 | 1186 | 0.1792 | 0.9677 | 0.8244 | 0.9643 | 0.8889 |
| 0.0229 | 3.0 | 1779 | 0.0623 | 0.9916 | 0.9817 | 0.9554 | 0.9683 |
| 0.0043 | 4.0 | 2372 | 0.0637 | 0.9904 | 0.9815 | 0.9464 | 0.9636 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3