metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-distilled-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9409677419354838
distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Loss: 0.1348
- Accuracy: 0.9410
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.2777 | 1.0 | 318 | 0.7817 | 0.7155 |
0.6021 | 2.0 | 636 | 0.3564 | 0.8613 |
0.3068 | 3.0 | 954 | 0.2092 | 0.9181 |
0.2015 | 4.0 | 1272 | 0.1677 | 0.9306 |
0.1639 | 5.0 | 1590 | 0.1517 | 0.9368 |
0.148 | 6.0 | 1908 | 0.1435 | 0.9397 |
0.1386 | 7.0 | 2226 | 0.1392 | 0.9394 |
0.1334 | 8.0 | 2544 | 0.1366 | 0.9416 |
0.1303 | 9.0 | 2862 | 0.1351 | 0.9410 |
0.1283 | 10.0 | 3180 | 0.1348 | 0.9410 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.12.1.post200
- Datasets 1.16.1
- Tokenizers 0.10.3