T5 for Chinese Couplet(t5-chinese-couplet) Model

T5中文对联生成模型

t5-chinese-couplet evaluate couplet test data:

The overall performance of T5 on couplet test:

prefix input_text target_text pred
对联: 春回大地,对对黄莺鸣暖树 日照神州,群群紫燕衔新泥 福至人间,家家紫燕舞和风

在Couplet测试集上生成结果满足字数相同、词性对齐、词面对齐、形似要求,而语义对仗工整和平仄合律还不满足。

T5的网络结构(原生T5):

arch

Usage

本项目开源在文本生成项目:textgen,可支持T5模型,通过如下命令调用:

Install package:

pip install -U textgen
from textgen import T5Model
model = T5Model("t5", "shibing624/t5-chinese-couplet")
r = model.predict(["对联:丹枫江冷人初去"])
print(r) # ['白石矶寒客不归']

Usage (HuggingFace Transformers)

Without textgen, you can use the model like this:

First, you pass your input through the transformer model, then you get the generated sentence.

Install package:

pip install transformers 
from transformers import T5ForConditionalGeneration, T5Tokenizer

tokenizer = T5Tokenizer.from_pretrained("shibing624/t5-chinese-couplet")
model = T5ForConditionalGeneration.from_pretrained("shibing624/t5-chinese-couplet")


def batch_generate(input_texts, max_length=64):
    features = tokenizer(input_texts, return_tensors='pt')
    outputs = model.generate(input_ids=features['input_ids'],
                             attention_mask=features['attention_mask'],
                             max_length=max_length)
    return tokenizer.batch_decode(outputs, skip_special_tokens=True)


r = batch_generate(["对联:丹枫江冷人初去"])
print(r)

output:

['白石矶寒客不归']

模型文件组成:

t5-chinese-couplet
    ├── config.json
    ├── model_args.json
    ├── pytorch_model.bin
    ├── special_tokens_map.json
    ├── tokenizer_config.json
    ├── spiece.model
    └── vocab.txt

训练数据集

中文对联数据集

数据格式:

head -n 1 couplet_files/couplet/train/in.txt
晚 风 摇 树 树 还 挺 

head -n 1 couplet_files/couplet/train/out.txt
晨 露 润 花 花 更 红 

如果需要训练T5模型,请参考https://github.com/shibing624/textgen/blob/main/docs/%E5%AF%B9%E8%81%94%E7%94%9F%E6%88%90%E6%A8%A1%E5%9E%8B%E5%AF%B9%E6%AF%94.md

Citation

@software{textgen,
  author = {Xu Ming},
  title = {textgen: Implementation of Text Generation models},
  year = {2022},
  url = {https://github.com/shibing624/textgen},
}
Downloads last month
11
Safetensors
Model size
248M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using shibing624/t5-chinese-couplet 1