leaderboard-pr-bot's picture
Adding Evaluation Results
48044e4
|
raw
history blame
7.22 kB
---
title: chinese-alpaca-plus-7b
emoji: 📚
colorFrom: gray
colorTo: red
language:
- zh
tags:
- chatglm
- pytorch
- zh
- Text2Text-Generation
license: "other"
widget:
- text: "为什么天空是蓝色的?"
---
# Chinese Alpaca Plus 7B Model
**发布中文LLaMA, Alpaca Plus版(7B)模型**
推出中文LLaMA, Alpaca Plus版(7B),相比基础版本的改进点如下:
- 进一步扩充了训练数据,其中LLaMA扩充至120G文本(通用领域),Alpaca扩充至4M指令数据(重点增加了STEM相关数据)
- Alpaca训练时采用了更大的rank,相比原版具有更低的验证集损失
- 评测结果显示,Alpaca-Plus-7B相比基础版Alpaca-7B效果更优,部分任务接近或超过13B版本
- 这一轮比拼:7B获得65.3分,13B获得70.9分,Plus-7B效果75.3分,具体评测结果请参考[效果评测](https://github.com/ymcui/Chinese-LLaMA-Alpaca/blob/main/examples/README.md)
本模型是`原生LLaMA-7B`合并`中文LLaMA LoRA``中文Alpaca LoRA`后的模型权重`chinese-alpaca-plus-7b-hf`,并转化为HuggingFace版本权重(.bin文件),可以直接使用或者继续训练。
13b-hf权重链接:https://huggingface.co./shibing624/chinese-alpaca-plus-13b-hf
test case:
|input_text|predict|
|:-- |:--- |
|为什么天空是蓝色的?|天空是蓝色的,是因为大气层中的气体分子会散射太阳光中的蓝色光,使得我们看到的天空是蓝色的。|
## release model weight
- chinese-llama-plus-7b 模型权重链接:https://huggingface.co./minlik/chinese-llama-plus-7b-merged
- chinese-alpaca-plus-7b 模型权重链接:https://huggingface.co./shibing624/chinese-alpaca-plus-7b-hf
- chinese-llama-plus-13b 模型权重链接:https://huggingface.co./shibing624/chinese-llama-plus-13b-hf
- chinese-aplaca-plus-13b 模型权重链接:https://huggingface.co./shibing624/chinese-alpaca-plus-13b-hf
## Usage
本项目开源在textgen项目:[textgen](https://github.com/shibing624/textgen),可支持llama模型,通过如下命令调用:
Install package:
```shell
pip install -U textgen
```
```python
from textgen import LlamaModel
model = LlamaModel("llama", "shibing624/chinese-alpaca-plus-7b-hf")
r = model.predict(["用一句话描述地球为什么是独一无二的。"])
print(r) # ['地球是独一无二的,因为它拥有独特的大气层、水循环、生物多样性以及其他自然资源,这些都使它成为一个独特的生命支持系统。']
```
## Usage (HuggingFace Transformers)
Without [textgen](https://github.com/shibing624/textgen), you can use the model like this:
First, you pass your input through the transformer model, then you get the generated sentence.
Install package:
```
pip install sentencepiece
pip install transformers>=4.28.0
```
```python
import torch
import transformers
from transformers import LlamaTokenizer, LlamaForCausalLM
def generate_prompt(text):
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{text}
### Response:"""
tokenizer = LlamaTokenizer.from_pretrained('shibing624/chinese-alpaca-plus-7b-hf')
model = LlamaForCausalLM.from_pretrained('shibing624/chinese-alpaca-plus-7b-hf').half().cuda()
model.eval()
text = '为什么天空是蓝色的?'
prompt = generate_prompt(text)
input_ids = tokenizer.encode(prompt, return_tensors='pt').to('cuda')
with torch.no_grad():
output_ids = model.generate(
input_ids=input_ids,
max_new_tokens=128,
temperature=1,
top_k=40,
top_p=0.9,
repetition_penalty=1.15
).cuda()
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(output.replace(text, '').strip())
```
output:
```shell
为什么天空是蓝色的?
天空是蓝色的,是因为大气层中的气体分子会散射太阳光中的蓝色光,使得我们看到的天空是蓝色的。
```
## 模型来源
release合并后的模型权重,一步到位直接使用,省电、减少碳排放。
基于 [多LoRA权重合并(适用于Chinese-Alpaca-Plus )](https://github.com/ymcui/Chinese-LLaMA-Alpaca/wiki/%E6%89%8B%E5%8A%A8%E6%A8%A1%E5%9E%8B%E5%90%88%E5%B9%B6%E4%B8%8E%E8%BD%AC%E6%8D%A2#%E5%A4%9Alora%E6%9D%83%E9%87%8D%E5%90%88%E5%B9%B6%E9%80%82%E7%94%A8%E4%BA%8Echinese-alpaca-plus-)方法手动合并而成,具体是使用 [decapoda-research/llama-7b-hf](https://huggingface.co./decapoda-research/llama-7b-hf)
底座模型 合并 Chinese-LLaMA-Plus-LoRA和Chinese-Alpaca-Plus-LoRA 两个LoRA权重 得到,并转化为HuggingFace版本权重(.bin文件)。
HuggingFace版本权重(.bin文件)可用于:
- 使用Transformers进行训练和推理
- 使用text-generation-webui搭建界面
PyTorch版本权重(.pth文件)可用于:
- 使用llama.cpp工具进行量化和部署
PyTorch版本权重(.pth文件)链接,8-bit量化版的Alpaca-Plus-7B:[Billsfriend/chinese-Alpaca-7b-plus-ggml-q8_0](https://huggingface.co./Billsfriend/chinese-Alpaca-7b-plus-ggml-q8_0/tree/main)
模型文件组成:
```
chinese-alpaca-plus-7b-hf
config.json
generation_config.json
pytorch_model-00001-of-00002.bin
pytorch_model-00002-of-00002.bin
pytorch_model.bin.index.json
special_tokens_map.json
tokenizer.json
tokenizer.model
tokenizer_config.json
```
硬件要求:14G显存
### 微调数据集
我整理部分公开微调数据集:
1. 50万条中文ChatGPT指令Belle数据集:[BelleGroup/train_0.5M_CN](https://huggingface.co./datasets/BelleGroup/train_0.5M_CN)
2. 100万条中文ChatGPT指令Belle数据集:[BelleGroup/train_1M_CN](https://huggingface.co./datasets/BelleGroup/train_1M_CN)
3. 5万条英文ChatGPT指令Alpaca数据集:[50k English Stanford Alpaca dataset](https://github.com/tatsu-lab/stanford_alpaca#data-release)
4. 5万条中文GPT4指令Alpaca数据集:[shibing624/alpaca-zh](https://huggingface.co./datasets/shibing624/alpaca-zh)
5. 69万条中文指令Guanaco数据集(Belle50万条+Guanaco19万条):[Chinese-Vicuna/guanaco_belle_merge_v1.0](https://huggingface.co./datasets/Chinese-Vicuna/guanaco_belle_merge_v1.0)
如果需要训练LLaMA模型,请参考[https://github.com/shibing624/textgen](https://github.com/shibing624/textgen)
## Citation
```latex
@software{textgen,
author = {Xu Ming},
title = {textgen: Implementation of language model finetune},
year = {2023},
url = {https://github.com/shibing624/textgen},
}
```
## Reference
- https://github.com/ymcui/Chinese-LLaMA-Alpaca
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_shibing624__chinese-alpaca-plus-7b-hf)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 42.46 |
| ARC (25-shot) | 49.23 |
| HellaSwag (10-shot) | 70.48 |
| MMLU (5-shot) | 38.39 |
| TruthfulQA (0-shot) | 39.72 |
| Winogrande (5-shot) | 70.09 |
| GSM8K (5-shot) | 0.68 |
| DROP (3-shot) | 28.61 |