Aria-sequential_mlp / README.md
aria-dev's picture
update readme
5c6db29
|
raw
history blame
2.47 kB
metadata
license: apache-2.0
language:
  - en
library_name: transformers
pipeline_tag: image-text-to-text
tags:
  - multimodal
  - aria

This is a fork of the rhymes-ai/Aria model. The main modification involves replacing grouped GEMM with a sequential MLP. In this configuration, each expert is implemented as a torch.nn.Linear layer executed in sequence. This adjustment simplifies quantization with current open-source libraries, which are optimized for nn.Linear layers.

While the sequential MLP approach aids in easier quantization, using grouped GEMM provides the advantage of faster inference speed.

Quick Start

Installation

pip install transformers==4.45.0 accelerate==0.34.1 sentencepiece==0.2.0 torchvision requests torch Pillow
pip install flash-attn --no-build-isolation

Inference

import requests
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessor

model_id_or_path = "rhymes-ai/Aria-sequential_mlp"

model = AutoModelForCausalLM.from_pretrained(model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)

processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True)

image_path = "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"

image = Image.open(requests.get(image_path, stream=True).raw)

messages = [
    {
        "role": "user",
        "content": [
            {"text": None, "type": "image"},
            {"text": "what is the image?", "type": "text"},
        ],
    }
]

text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=text, images=image, return_tensors="pt")
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)
inputs = {k: v.to(model.device) for k, v in inputs.items()}

with torch.inference_mode(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
    output = model.generate(
        **inputs,
        max_new_tokens=500,
        stop_strings=["<|im_end|>"],
        tokenizer=processor.tokenizer,
        do_sample=True,
        temperature=0.9,
    )
    output_ids = output[0][inputs["input_ids"].shape[1]:]
    result = processor.decode(output_ids, skip_special_tokens=True)

print(result)