fusion_None_sep_SEP_describe_gpt
This model is a fine-tuned version of OFA-Sys/chinese-clip-vit-base-patch16 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.9430
- Accuracy: 0.1888
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 60
- eval_batch_size: 20
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 480
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.6831 | 5.9653 | 774 | 2.6448 | 0.2023 |
2.5187 | 11.9306 | 1548 | 2.6595 | 0.2078 |
2.4385 | 17.8960 | 2322 | 2.7390 | 0.2042 |
2.3938 | 23.8613 | 3096 | 2.7901 | 0.2023 |
2.3615 | 29.8266 | 3870 | 2.8409 | 0.1995 |
2.3383 | 35.7919 | 4644 | 2.9097 | 0.1964 |
2.32 | 41.7572 | 5418 | 2.9306 | 0.1943 |
2.3179 | 47.7225 | 6192 | 2.9450 | 0.1923 |
2.3027 | 53.6879 | 6966 | 2.9337 | 0.1909 |
2.3015 | 59.6532 | 7740 | 2.9430 | 0.1898 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.20.0
- Downloads last month
- 17
Model tree for sharkMeow/fusion_None_sep_SEP_describe_gpt
Base model
OFA-Sys/chinese-clip-vit-base-patch16