fine-tuned-bert-CBT

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9580

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
2.6996 0.0278 10 2.5932
2.5659 0.0556 20 2.4949
2.5146 0.0833 30 2.3969
2.4268 0.1111 40 2.3803
2.3637 0.1389 50 2.2703
2.2599 0.1667 60 2.2429
2.2562 0.1944 70 2.1078
2.0763 0.2222 80 2.0618
2.0285 0.25 90 2.0001
2.0964 0.2778 100 1.9234
1.8736 0.3056 110 1.8622
1.9762 0.3333 120 1.8228
1.8524 0.3611 130 1.7528
1.7582 0.3889 140 1.6850
1.666 0.4167 150 1.6393
1.6081 0.4444 160 1.5788
1.5763 0.4722 170 1.5264
1.5569 0.5 180 1.5205
1.5338 0.5278 190 1.4746
1.3994 0.5556 200 1.4834
1.4633 0.5833 210 1.4261
1.5346 0.6111 220 1.3530
1.4419 0.6389 230 1.3255
1.2908 0.6667 240 1.3178
1.4339 0.6944 250 1.3066
1.2745 0.7222 260 1.2494
1.3522 0.75 270 1.2489
1.2186 0.7778 280 1.2322
1.2945 0.8056 290 1.1780
1.3717 0.8333 300 1.2243
1.2835 0.8611 310 1.2065
1.2402 0.8889 320 1.1678
1.0937 0.9167 330 1.1325
1.2552 0.9444 340 1.1202
1.1272 0.9722 350 1.1032
1.1746 1.0 360 1.0993
1.1314 1.0278 370 1.0908
1.1143 1.0556 380 1.0849
0.9685 1.0833 390 1.0890
0.8647 1.1111 400 1.1004
0.8987 1.1389 410 1.0898
0.8619 1.1667 420 1.1206
0.8827 1.1944 430 1.0759
0.9164 1.2222 440 1.0875
1.1161 1.25 450 1.0763
0.8902 1.2778 460 1.0525
0.9228 1.3056 470 1.0476
0.789 1.3333 480 1.0377
0.8984 1.3611 490 1.0522
1.065 1.3889 500 1.0215
0.7046 1.4167 510 1.0186
0.9612 1.4444 520 1.0143
0.7705 1.4722 530 1.0207
0.7768 1.5 540 1.0060
1.0041 1.5278 550 1.0296
1.0711 1.5556 560 1.0030
0.6894 1.5833 570 1.0044
1.1434 1.6111 580 0.9944
0.9194 1.6389 590 0.9822
0.8456 1.6667 600 0.9993
0.8691 1.6944 610 0.9917
0.8099 1.7222 620 0.9836
0.9797 1.75 630 0.9814
0.9307 1.7778 640 0.9790
0.6684 1.8056 650 0.9704
0.8533 1.8333 660 0.9869
0.8324 1.8611 670 0.9658
0.7872 1.8889 680 0.9683
0.6827 1.9167 690 0.9857
1.0274 1.9444 700 0.9893
0.8892 1.9722 710 0.9738
0.7447 2.0 720 0.9732
0.7072 2.0278 730 0.9748
0.7205 2.0556 740 0.9637
0.6102 2.0833 750 0.9647
0.7017 2.1111 760 0.9520
0.7374 2.1389 770 0.9495
0.6856 2.1667 780 0.9455
0.4585 2.1944 790 0.9481
0.5872 2.2222 800 0.9494
0.7054 2.25 810 0.9457
0.7 2.2778 820 0.9557
0.5781 2.3056 830 0.9579
0.6319 2.3333 840 0.9677
0.5814 2.3611 850 0.9705
0.5985 2.3889 860 0.9614
0.729 2.4167 870 0.9536
0.6084 2.4444 880 0.9499
0.755 2.4722 890 0.9594
0.4991 2.5 900 0.9782
0.5469 2.5278 910 0.9928
0.6299 2.5556 920 0.9875
0.5911 2.5833 930 0.9720
0.4386 2.6111 940 0.9701
0.5477 2.6389 950 0.9695
0.6532 2.6667 960 0.9723
0.6322 2.6944 970 0.9710
0.4968 2.7222 980 0.9701
0.5498 2.75 990 0.9708
0.746 2.7778 1000 0.9697
0.5654 2.8056 1010 0.9698
0.5468 2.8333 1020 0.9655
0.6086 2.8611 1030 0.9643
0.6928 2.8889 1040 0.9612
0.4775 2.9167 1050 0.9585
0.5934 2.9444 1060 0.9579
0.6645 2.9722 1070 0.9580
0.5721 3.0 1080 0.9580

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
23
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for shanthi-323/fine-tuned-bert-CBT

Finetuned
(2370)
this model

Dataset used to train shanthi-323/fine-tuned-bert-CBT