Nomic Embed Financial Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/nomic-embed-text-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("shail-2512/nomic-embed-financial-matryoshka")
# Run inference
sentences = [
'How are government incentives treated in accounting according to the given information?',
'We are entitled to certain advanced manufacturing production credits under the IRA, and government incentives are not accounted for or classified as an income tax credit. We account for government incentives as a reduction of expense, a reduction of the cost of the capital investment or other income based on the substance of the incentive received. Benefits are generally recorded when there is reasonable assurance of receipt or, as it relates with advanced manufacturing production credits, upon the generation of the credit.',
'Basic net income per share is computed by dividing net income attributable to common stock by the weighted-average number of shares of common stock outstanding during the period.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.7186 | 0.7157 | 0.7029 | 0.7 | 0.69 |
cosine_accuracy@3 | 0.87 | 0.8686 | 0.86 | 0.8429 | 0.83 |
cosine_accuracy@5 | 0.9014 | 0.9029 | 0.8914 | 0.8771 | 0.8671 |
cosine_accuracy@10 | 0.9357 | 0.9343 | 0.9271 | 0.9271 | 0.9129 |
cosine_precision@1 | 0.7186 | 0.7157 | 0.7029 | 0.7 | 0.69 |
cosine_precision@3 | 0.29 | 0.2895 | 0.2867 | 0.281 | 0.2767 |
cosine_precision@5 | 0.1803 | 0.1806 | 0.1783 | 0.1754 | 0.1734 |
cosine_precision@10 | 0.0936 | 0.0934 | 0.0927 | 0.0927 | 0.0913 |
cosine_recall@1 | 0.7186 | 0.7157 | 0.7029 | 0.7 | 0.69 |
cosine_recall@3 | 0.87 | 0.8686 | 0.86 | 0.8429 | 0.83 |
cosine_recall@5 | 0.9014 | 0.9029 | 0.8914 | 0.8771 | 0.8671 |
cosine_recall@10 | 0.9357 | 0.9343 | 0.9271 | 0.9271 | 0.9129 |
cosine_ndcg@10 | 0.8338 | 0.8321 | 0.8208 | 0.8175 | 0.8043 |
cosine_mrr@10 | 0.8005 | 0.7986 | 0.7862 | 0.7821 | 0.7693 |
cosine_map@100 | 0.8031 | 0.8013 | 0.7893 | 0.7853 | 0.7729 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 2 tokens
- mean: 20.65 tokens
- max: 45 tokens
- min: 2 tokens
- mean: 46.29 tokens
- max: 326 tokens
- Samples:
anchor positive Where is the Investor Relations office of Intuit Inc. located?
Copies of this Annual Report on Form 10-K may also be obtained without charge by contacting Investor Relations, Intuit Inc., P.O. Box 7850, Mountain View, California 94039-7850, calling 650-944-6000, or emailing [email protected].
Where is the Financial Statement Schedule located in the Form 10-K?
The Financial Statement Schedule is found on page S-1 of the Form 10-K.
What factors are considered when evaluating the realization of deferred tax assets?
Many factors are considered when assessing whether it is more likely than not that the deferred tax assets will be realized, including recent cumulative earnings, expectations of future taxable income, carryforward periods and other relevant quantitative and qualitative factors.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
json
- Dataset: json
- Size: 700 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 700 samples:
anchor positive type string string details - min: 2 tokens
- mean: 20.71 tokens
- max: 45 tokens
- min: 9 tokens
- mean: 46.74 tokens
- max: 248 tokens
- Samples:
anchor positive What fiscal changes did Garmin make in January 2023?
The Company announced an organization realignment in January 2023, which combined the consumer auto operating segment with the outdoor operating segment.
Where are the details about 'Legal Matters' and 'Government Investigations, Audits and Reviews' located in the financial statements?
The information required by this Item 3 is incorporated herein by reference to the information set forth under the captions 'Legal Matters' and 'Government Investigations, Audits and Reviews' in Note 12 of the Notes to the Consolidated Financial Statements included in Part II, Item 8, 'Financial Statements and Supplementary Data'.
Are the pages of IBM's Management’s Discussion and Analysis section in the 2023 Annual Report included in the report itself?
In IBM’s 2023 Annual Report, the pages containing Management’s Discussion and Analysis of Financial Condition and Results of Operations (pages 6 through 40) are incorporated by reference.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochgradient_accumulation_steps
: 8learning_rate
: 2e-05lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 8eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|---|
0.1015 | 10 | 0.2626 | - | - | - | - | - | - |
0.2030 | 20 | 0.1764 | - | - | - | - | - | - |
0.1015 | 10 | 0.0311 | - | - | - | - | - | - |
0.2030 | 20 | 0.0259 | - | - | - | - | - | - |
0.1015 | 10 | 0.0056 | - | - | - | - | - | - |
0.2030 | 20 | 0.0064 | - | - | - | - | - | - |
0.1015 | 10 | 0.0016 | - | - | - | - | - | - |
0.2030 | 20 | 0.0015 | - | - | - | - | - | - |
0.1015 | 10 | 0.0006 | - | - | - | - | - | - |
0.2030 | 20 | 0.0006 | - | - | - | - | - | - |
0.3046 | 30 | 0.1324 | - | - | - | - | - | - |
0.4061 | 40 | 0.113 | - | - | - | - | - | - |
0.5076 | 50 | 0.128 | - | - | - | - | - | - |
0.6091 | 60 | 0.1134 | - | - | - | - | - | - |
0.7107 | 70 | 0.056 | - | - | - | - | - | - |
0.8122 | 80 | 0.1086 | - | - | - | - | - | - |
0.9137 | 90 | 0.1008 | - | - | - | - | - | - |
1.0 | 99 | - | 0.0771 | 0.8286 | 0.8306 | 0.8266 | 0.8197 | 0.7955 |
1.0102 | 100 | 0.0491 | - | - | - | - | - | - |
1.1117 | 110 | 0.0029 | - | - | - | - | - | - |
1.2132 | 120 | 0.0009 | - | - | - | - | - | - |
1.3147 | 130 | 0.0326 | - | - | - | - | - | - |
1.4162 | 140 | 0.0077 | - | - | - | - | - | - |
1.5178 | 150 | 0.0109 | - | - | - | - | - | - |
1.6193 | 160 | 0.0047 | - | - | - | - | - | - |
1.7208 | 170 | 0.004 | - | - | - | - | - | - |
1.8223 | 180 | 0.0122 | - | - | - | - | - | - |
1.9239 | 190 | 0.0043 | - | - | - | - | - | - |
2.0 | 198 | - | 0.0758 | 0.8296 | 0.8330 | 0.8222 | 0.8169 | 0.7998 |
2.0203 | 200 | 0.0032 | - | - | - | - | - | - |
2.1218 | 210 | 0.0002 | - | - | - | - | - | - |
2.2234 | 220 | 0.0002 | - | - | - | - | - | - |
2.3249 | 230 | 0.0097 | - | - | - | - | - | - |
2.4264 | 240 | 0.0012 | - | - | - | - | - | - |
2.5279 | 250 | 0.0012 | - | - | - | - | - | - |
2.6294 | 260 | 0.0009 | - | - | - | - | - | - |
2.7310 | 270 | 0.0007 | - | - | - | - | - | - |
2.8325 | 280 | 0.0019 | - | - | - | - | - | - |
2.9340 | 290 | 0.0009 | - | - | - | - | - | - |
2.9746 | 294 | - | 0.0744 | 0.8338 | 0.8321 | 0.8208 | 0.8175 | 0.8043 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for shail-2512/nomic-embed-financial-matryoshka
Base model
nomic-ai/nomic-embed-text-v1.5Dataset used to train shail-2512/nomic-embed-financial-matryoshka
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.719
- Cosine Accuracy@3 on dim 768self-reported0.870
- Cosine Accuracy@5 on dim 768self-reported0.901
- Cosine Accuracy@10 on dim 768self-reported0.936
- Cosine Precision@1 on dim 768self-reported0.719
- Cosine Precision@3 on dim 768self-reported0.290
- Cosine Precision@5 on dim 768self-reported0.180
- Cosine Precision@10 on dim 768self-reported0.094
- Cosine Recall@1 on dim 768self-reported0.719
- Cosine Recall@3 on dim 768self-reported0.870