Model Card for shaheerzk/text-to-rdb-queries
Inference with hugging face transformers
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("shaheerzk/text-to-rdb-queries")
model.to("cuda")
generated_ids = model.generate(tokens, max_new_tokens=1000, do_sample=True)
# decode with mistral tokenizer
result = tokenizer.decode(generated_ids[0].tolist())
print(result)
PRs to correct the
transformers
tokenizer so that it gives 1-to-1 the same results as themistral_common
reference implementation are very welcome!
The shaheerzk/text-to-rdb-queries Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.2.
Instruction format
This format is available as a chat template via the apply_chat_template()
method:
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("shaheerzk/text-to-rdb-queries")
tokenizer = AutoTokenizer.from_pretrained("shaheerzk/text-to-rdb-queries")
messages = [
{"role": "user", "content": ""},
{"role": "assistant", "content": ""},
{"role": "user", "content": ""}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
- Downloads last month
- 13