videomae-base-finetuned-ucf-crimevbinary-balancedv6

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6175
  • Accuracy: 0.8475
  • Precision: 0.8572
  • Recall: 0.8475
  • Auc: 0.9263

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Auc
0.5676 1.0 165 0.5685 0.6608 0.6975 0.6608 0.8059
0.5645 2.0 330 0.3607 0.8481 0.8509 0.8481 0.9362
0.4638 3.0 495 0.5746 0.8021 0.8226 0.8021 0.8919
0.5765 4.0 660 0.3634 0.8622 0.8626 0.8622 0.9262
0.4146 5.0 825 0.5092 0.8092 0.8302 0.8092 0.9225
0.4319 6.0 990 0.4897 0.8799 0.8811 0.8799 0.9316
0.3396 7.0 1155 0.5233 0.8587 0.8599 0.8587 0.9257
0.1152 8.0 1320 0.6568 0.8763 0.8767 0.8763 0.9190
0.0578 9.0 1485 0.6344 0.8693 0.8716 0.8693 0.9321
0.0029 10.0 1650 0.7321 0.8728 0.8739 0.8728 0.9280
0.1363 11.0 1815 0.7399 0.8622 0.8636 0.8622 0.9215

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
21
Safetensors
Model size
86.2M params
Tensor type
F32
·
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for shahadalll/videomae-base-finetuned-ucf-crimevbinary-balancedv6

Finetuned
(463)
this model