|
--- |
|
language: en |
|
license: mit |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- task-oriented-dialogues |
|
- dialog-flow |
|
datasets: |
|
- sergioburdisso/dialog2flow-dataset |
|
- Salesforce/dialogstudio |
|
pipeline_tag: sentence-similarity |
|
base_model: |
|
- aws-ai/dse-bert-base |
|
widget: |
|
- source_sentence: your phone please |
|
sentences: |
|
- please get their phone number |
|
- okay can i get your phone number please to make that booking |
|
- okay can i please get your id number |
|
output: |
|
- label: '0' |
|
score: 0.9 |
|
- label: '1' |
|
score: 0.85 |
|
- label: '2' |
|
score: 0.27 |
|
--- |
|
|
|
![image/png](voronoi_umap.png) |
|
|
|
# **Dialog2Flow joint target model** (DSE-base) |
|
|
|
This a variation of the **D2F$_{joint}$** model introduced in the paper ["Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction"](https://arxiv.org/abs/2410.18481) published in the EMNLP 2024 main conference. |
|
This version uses DSE-base as the backbone model which yields to an increase in performance as compared to the vanilla version using BERT-base as the backbone (results reported in Appendix C). |
|
|
|
Implementation-wise, this is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or search. |
|
|
|
<!--- Describe your model here --> |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["your phone please", "okay may i have your telephone number please"] |
|
|
|
model = SentenceTransformer('sergioburdisso/dialog2flow-joint-dse-base') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
|
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ['your phone please', 'okay may i have your telephone number please'] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('sergioburdisso/dialog2flow-joint-dse-base') |
|
model = AutoModel.from_pretrained('sergioburdisso/dialog2flow-joint-dse-base') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
## Training |
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 363506 with parameters: |
|
``` |
|
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`spretrainer.losses.LabeledContrastiveLoss.LabeledContrastiveLoss` |
|
|
|
**DataLoader**: |
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 49478 with parameters: |
|
``` |
|
{'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`spretrainer.losses.LabeledContrastiveLoss.LabeledContrastiveLoss` |
|
|
|
Parameters of the fit()-Method: |
|
``` |
|
{ |
|
"epochs": 15, |
|
"evaluation_steps": 164, |
|
"evaluator": [ |
|
"spretrainer.evaluation.FewShotClassificationEvaluator.FewShotClassificationEvaluator" |
|
], |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>", |
|
"optimizer_params": { |
|
"lr": 3e-06 |
|
}, |
|
"scheduler": "WarmupLinear", |
|
"warmup_steps": 100, |
|
"weight_decay": 0.01 |
|
} |
|
``` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
) |
|
``` |
|
|
|
## Citation |
|
|
|
|
|
```bibtex |
|
@inproceedings{burdisso-etal-2024-dialog2flow, |
|
title = "Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction", |
|
author = "Burdisso, Sergio and |
|
Madikeri, Srikanth and |
|
Motlicek, Petr", |
|
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing", |
|
month = nov, |
|
year = "2024", |
|
address = "Miami", |
|
publisher = "Association for Computational Linguistics", |
|
} |
|
``` |
|
|
|
## License |
|
|
|
Copyright (c) 2024 [Idiap Research Institute](https://www.idiap.ch/). |
|
MIT License. |