Базовый Bert для Semantic text similarity (STS) на CPU
Базовая модель BERT для расчетов компактных эмбеддингов предложений на русском языке. Модель основана на cointegrated/rubert-tiny2 - имеет аналогичные размеры контекста (2048) и ембеддинга (312), количество слоев увеличено с 3 до 7.
Использование модели с библиотекой transformers
:
# pip install transformers sentencepiece
import torch
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("sergeyzh/rubert-mini-sts")
model = AutoModel.from_pretrained("sergeyzh/rubert-mini-sts")
# model.cuda() # uncomment it if you have a GPU
def embed_bert_cls(text, model, tokenizer):
t = tokenizer(text, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**{k: v.to(model.device) for k, v in t.items()})
embeddings = model_output.last_hidden_state[:, 0, :]
embeddings = torch.nn.functional.normalize(embeddings)
return embeddings[0].cpu().numpy()
print(embed_bert_cls('привет мир', model, tokenizer).shape)
# (312,)
Использование с sentence_transformers
:
from sentence_transformers import SentenceTransformer, util
model = SentenceTransformer('sergeyzh/rubert-mini-sts')
sentences = ["привет мир", "hello world", "здравствуй вселенная"]
embeddings = model.encode(sentences)
print(util.dot_score(embeddings, embeddings))
Метрики
Оценки модели на бенчмарке encodechka:
Модель | STS | PI | NLI | SA | TI |
---|---|---|---|---|---|
intfloat/multilingual-e5-large | 0.862 | 0.727 | 0.473 | 0.810 | 0.979 |
sergeyzh/LaBSE-ru-sts | 0.845 | 0.737 | 0.481 | 0.805 | 0.957 |
sergeyzh/rubert-mini-sts | 0.815 | 0.723 | 0.477 | 0.791 | 0.949 |
sergeyzh/rubert-tiny-sts | 0.797 | 0.702 | 0.453 | 0.778 | 0.946 |
Tochka-AI/ruRoPEBert-e5-base-512 | 0.793 | 0.704 | 0.457 | 0.803 | 0.970 |
cointegrated/LaBSE-en-ru | 0.794 | 0.659 | 0.431 | 0.761 | 0.946 |
cointegrated/rubert-tiny2 | 0.750 | 0.651 | 0.417 | 0.737 | 0.937 |
Задачи:
- Semantic text similarity (STS);
- Paraphrase identification (PI);
- Natural language inference (NLI);
- Sentiment analysis (SA);
- Toxicity identification (TI).
Быстродействие и размеры
На бенчмарке encodechka:
Модель | CPU | GPU | size | dim | n_ctx | n_vocab |
---|---|---|---|---|---|---|
intfloat/multilingual-e5-large | 149.026 | 15.629 | 2136 | 1024 | 514 | 250002 |
sergeyzh/LaBSE-ru-sts | 42.835 | 8.561 | 490 | 768 | 512 | 55083 |
sergeyzh/rubert-mini-sts | 6.417 | 5.517 | 123 | 312 | 2048 | 83828 |
sergeyzh/rubert-tiny-sts | 3.208 | 3.379 | 111 | 312 | 2048 | 83828 |
Tochka-AI/ruRoPEBert-e5-base-512 | 43.314 | 9.338 | 532 | 768 | 512 | 69382 |
cointegrated/LaBSE-en-ru | 42.867 | 8.549 | 490 | 768 | 512 | 55083 |
cointegrated/rubert-tiny2 | 3.212 | 3.384 | 111 | 312 | 2048 | 83828 |
- Downloads last month
- 207
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.