sercetexam9's picture
Training completed!
3657b51 verified
metadata
library_name: transformers
license: mit
base_model: xlnet/xlnet-large-cased
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: UIT-xlnet-large-cased-finetuned
    results: []

UIT-xlnet-large-cased-finetuned

This model is a fine-tuned version of xlnet/xlnet-large-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7544
  • F1: 0.7191
  • Roc Auc: 0.7866
  • Accuracy: 0.4765

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.6047 1.0 139 0.5968 0.1435 0.5 0.1300
0.551 2.0 278 0.5818 0.1393 0.4981 0.1318
0.549 3.0 417 0.5342 0.3274 0.5764 0.1931
0.4438 4.0 556 0.5083 0.4820 0.6362 0.3105
0.3647 5.0 695 0.4219 0.6477 0.7325 0.4043
0.3083 6.0 834 0.4281 0.6663 0.7489 0.4079
0.2307 7.0 973 0.4171 0.6962 0.7756 0.4404
0.1962 8.0 1112 0.4786 0.6985 0.7706 0.4242
0.1404 9.0 1251 0.5594 0.6960 0.7769 0.4152
0.0739 10.0 1390 0.5989 0.7033 0.7768 0.4567
0.0604 11.0 1529 0.6251 0.7028 0.7758 0.4603
0.0357 12.0 1668 0.6687 0.7077 0.7822 0.4531
0.0198 13.0 1807 0.7097 0.6973 0.7701 0.4422
0.0339 14.0 1946 0.7104 0.6992 0.7732 0.4531
0.0228 15.0 2085 0.7339 0.7150 0.7842 0.4765
0.0147 16.0 2224 0.7418 0.6941 0.7734 0.4711
0.0078 17.0 2363 0.7514 0.7130 0.7833 0.4765
0.0069 18.0 2502 0.7544 0.7191 0.7866 0.4765
0.0067 19.0 2641 0.7570 0.7146 0.7845 0.4693
0.005 20.0 2780 0.7579 0.7134 0.7834 0.4729

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.21.0