sercetexam9's picture
Training completed!
06496d1 verified
|
raw
history blame
3.15 kB
metadata
library_name: transformers
license: mit
base_model: xlnet/xlnet-large-cased
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: UIT-xlnet-large-cased-finetuned
    results: []

UIT-xlnet-large-cased-finetuned

This model is a fine-tuned version of xlnet/xlnet-large-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7374
  • F1: 0.7190
  • Roc Auc: 0.7861
  • Accuracy: 0.4368

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.6144 1.0 139 0.5899 0.0858 0.5045 0.1245
0.55 2.0 278 0.5547 0.2409 0.5430 0.1625
0.5049 3.0 417 0.4514 0.5298 0.6834 0.3574
0.4 4.0 556 0.4586 0.5030 0.6732 0.3538
0.3206 5.0 695 0.4345 0.6371 0.7279 0.3827
0.2969 6.0 834 0.4264 0.6807 0.7627 0.4170
0.2036 7.0 973 0.4564 0.6871 0.7633 0.4495
0.1986 8.0 1112 0.4918 0.6930 0.7632 0.4170
0.1437 9.0 1251 0.5499 0.7021 0.7861 0.3953
0.1066 10.0 1390 0.5774 0.7028 0.7725 0.4224
0.0674 11.0 1529 0.6038 0.7145 0.7824 0.4585
0.038 12.0 1668 0.6528 0.7020 0.7797 0.4458
0.0341 13.0 1807 0.6681 0.7092 0.7781 0.4477
0.0308 14.0 1946 0.6986 0.7085 0.7796 0.4260
0.0109 15.0 2085 0.7297 0.7087 0.7796 0.4332
0.0224 16.0 2224 0.7307 0.7156 0.7838 0.4440
0.0097 17.0 2363 0.7358 0.7155 0.7816 0.4440
0.0103 18.0 2502 0.7374 0.7190 0.7861 0.4368
0.0116 19.0 2641 0.7381 0.7150 0.7829 0.4368
0.0077 20.0 2780 0.7383 0.7130 0.7817 0.4350

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.21.0