sercetexam9's picture
Training completed!
74897c4 verified
metadata
library_name: transformers
license: mit
base_model: xlnet-large-cased
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: PRE-xlnet-large-cased-finetuned-augmentation
    results: []

PRE-xlnet-large-cased-finetuned-augmentation

This model is a fine-tuned version of xlnet-large-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3312
  • F1: 0.7328
  • Roc Auc: 0.8488
  • Accuracy: 0.7773

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.34 1.0 389 0.3108 0.1424 0.5799 0.5386
0.2957 2.0 778 0.2733 0.3070 0.6420 0.5637
0.2697 3.0 1167 0.2241 0.4578 0.6995 0.6525
0.2248 4.0 1556 0.1944 0.5903 0.7595 0.7239
0.1689 5.0 1945 0.1793 0.6729 0.8127 0.7561
0.1052 6.0 2334 0.1961 0.6682 0.7962 0.7600
0.0964 7.0 2723 0.2035 0.6728 0.7989 0.7613
0.0885 8.0 3112 0.2315 0.7185 0.8404 0.7593
0.0497 9.0 3501 0.2608 0.7264 0.8476 0.7593
0.0411 10.0 3890 0.2688 0.7212 0.8363 0.7831
0.0182 11.0 4279 0.3081 0.7300 0.8558 0.7709
0.0186 12.0 4668 0.3179 0.7216 0.8452 0.7754
0.0131 13.0 5057 0.3312 0.7328 0.8488 0.7773
0.0069 14.0 5446 0.3464 0.7272 0.8472 0.7716
0.0069 15.0 5835 0.3522 0.7316 0.8481 0.7793
0.0027 16.0 6224 0.3555 0.7303 0.8500 0.7773

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0