SpanMarker with bert-base-cased on conll2002
This is a SpanMarker model trained on the conll2002 dataset that can be used for Named Entity Recognition. This SpanMarker model uses bert-base-cased as the underlying encoder.
Model Details
Model Description
- Model Type: SpanMarker
- Encoder: bert-base-cased
- Maximum Sequence Length: 256 tokens
- Maximum Entity Length: 8 words
- Training Dataset: conll2002
- Language: es
- License: cc-by-sa-4.0
Model Sources
- Repository: SpanMarker on GitHub
- Thesis: SpanMarker For Named Entity Recognition
Model Labels
Label | Examples |
---|---|
LOC | "Victoria", "Australia", "Melbourne" |
MISC | "Ley", "Ciudad", "CrimeNet" |
ORG | "Tribunal Supremo", "EFE", "Commonwealth" |
PER | "Abogado General del Estado", "Daryl Williams", "Abogado General" |
Evaluation
Metrics
Label | Precision | Recall | F1 |
---|---|---|---|
all | 0.8331 | 0.8074 | 0.8201 |
LOC | 0.8471 | 0.7759 | 0.8099 |
MISC | 0.7092 | 0.4264 | 0.5326 |
ORG | 0.7854 | 0.8558 | 0.8191 |
PER | 0.9471 | 0.9329 | 0.9400 |
Uses
Direct Use for Inference
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("(SV2147) PP: PROBLEMAS INTERNOS PSOE INTERFIEREN EN POLITICA DE LA JUNTA Córdoba (EFE).")
Downstream Use
You can finetune this model on your own dataset.
Click to expand
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Sentence length | 0 | 31.8014 | 1238 |
Entities per sentence | 0 | 2.2583 | 160 |
Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
- mixed_precision_training: Native AMP
Training Results
Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
---|---|---|---|---|---|---|
0.1164 | 200 | 0.0260 | 0.6907 | 0.5358 | 0.6035 | 0.9264 |
0.2328 | 400 | 0.0199 | 0.7567 | 0.6384 | 0.6925 | 0.9414 |
0.3491 | 600 | 0.0176 | 0.7773 | 0.7273 | 0.7515 | 0.9563 |
0.4655 | 800 | 0.0157 | 0.8066 | 0.7598 | 0.7825 | 0.9601 |
0.5819 | 1000 | 0.0158 | 0.8031 | 0.7413 | 0.7710 | 0.9605 |
0.6983 | 1200 | 0.0156 | 0.7975 | 0.7598 | 0.7782 | 0.9609 |
0.8147 | 1400 | 0.0139 | 0.8210 | 0.7615 | 0.7901 | 0.9625 |
0.9310 | 1600 | 0.0129 | 0.8426 | 0.7848 | 0.8127 | 0.9651 |
Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.38.2
- PyTorch: 2.2.1+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
- Downloads last month
- 8,697
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for sepulm01/span-marker-bert-base-conll2002-es
Base model
google-bert/bert-base-casedDataset used to train sepulm01/span-marker-bert-base-conll2002-es
Evaluation results
- F1 on Unknowntest set self-reported0.820
- Precision on Unknowntest set self-reported0.833
- Recall on Unknowntest set self-reported0.807